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Abstract. Robotic missions beyond 2013 will likely be precursors to a manned habitat deployment on Mars. Such
missions require robust control systems for long duration activities. Current single rover missions will evolve into
deployment of multiple, heterogeneous cooperating robotic colonies. This paper describes the map-making memory
and action selection mechanism of BISMARC (Biologically Inspired System for Map-based Autonomous Rover
Control) that is currently under development at the Jet Propulsion Laboratory in Pasadena, CA (Huntsberger and
Rose,Neutral Networks, 11(7/8):1497–1510). BISMARC is an integrated control system for long duration missions
involving robots performing cooperative tasks.
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1. Introduction

Robotic outposts and precursor missions for deploy-
ment of manned habitat infrastructure on Mars are be-
ing studied by NASA for the second decade of this cen-
tury (Schenker et al., 2000; Huntsberger et al., 2001).
Such missions require more autonomy in their con-
trol architecture than the Pathfinder/Sojourner mis-
sion that landed on Mars in the summer of 1997.
Representative biologically inspired navigation and
control systems for such outposts include CEBOT
(Fukuda and Kawauchi, 1993), Q-machines (Kube
and Zhang, 1997), the Tropism System Cognitive Ar-
chitecture (Agah and Bekey, 1997), behavior-based
control (Mataric, 1997), ALLIANCE (Parker, 1998),
and CAMPOUT (Pirjanian et al., 2000 and references
therein). Good overviews can be found in Maes (1991),
Pfeifer and Scheier (1999).

We have recently developed a multi-robot control
architecture called BISMARC (Biologically Inspired
System for Map-based Autonomous Rover Control)
for long duration missions (Huntsberger and Rose,
1998). It is based on a free-flow hierarchy (FFH)
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similar to the DAMN architecture (Rosenblatt and
Payton, 1989), and has been used successfully for
a number of different simulated mission scenar-
ios including multiple cache retrieval (Huntsberger,
1997), fault tolerance for long duration missions
(Huntsberger, 1998), and site preparation (Huntsberger
et al., 1999). The system includes all aspects of
safety, self-maintenance, and goal achievement that
robotic systems require for a sustained planetary sur-
face presence. It currently doesn’t include global plan-
ning or any adaptive learning capabilities beyond
map-making.

The next section briefly describes the organization
of BISMARC, followed by a discussion of the ac-
tion selection mechanism and map-making memory of
the system. We close with experimental studies and
conclusions.

2. BISMARC Organization

BISMARC is organized as a two level system (shown in
Fig. 1). The first level generates possible motor actions
using stereo images and the second level uses these ac-
tion hypotheses coupled with external and internal in-
puts to drive the actuators on the robot. TheDriveMaps
algorithm used for action generation analyzes local
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Figure 1. Two level BISMARC architecture with stereo processing
action generation, and action selection subsystems.

range information for clear paths relative to a goal and
is currently implemented on the SRR and FIDO rovers
at JPL. A fuzzy adaptive behavior system with simi-
lar capabilities toDriveMaps is described in Tunstel
(2001).

Figure 2 illustrates an action selection hierarchy
for a cache retrieval mission. The rectangular boxes
represent behaviors and the ovals are sensory in-
puts (either fixed, direct, or derived). At the top are
the high level behaviors includingAvoid Dangerous
Places, Sleep at Night, Warm Up, Scan for Cache,
Get Cache, Cool Down, Get Power,and Keep Vari-
ance Low. These goals are related to both task and
rover safety. For example, since most planetary sur-
face rovers have only visual sensors for navigation, the
sensory input forProximity to Nightis derived from
knowledge of the sun’s position and forces the rover
to sleep at night by weighting the input toSleep at
Night heavier (16.0) than any other behavior in the
hierarchy.

The intermediate level behaviors are designed to
interact with both the short term memory (STM),
which corresponds to perceived sensory stimuli, and
the long term memory (LTM), which encodes re-
membered sensory information. Control loops are pre-
vented through temporal penalties (shown as T-circles
in Fig. 2) that constrain the system to only repeat a
behavior a predetermined number of times. The bot-
tom level behaviors in the hierarchy fuse the sen-
sory inputs and the activations of the higher level
behaviors in order to select an appropriate action to
drive the actuators. The next section describes the
action selection mechanism of BISMARC in more
detail.

3. Action Selection Mechanism

Action selection mechanisms for rovers on a planetary
surface require low computational overhead, reactiv-
ity even in uncertain environments, no loss of internal
state information, combination of conflicting behav-
iors, and the localization of sensory input to the appro-
priate modules. The FFH used in BISMARC includes
all of these capabilities.

Combining the inputs to a behavioral node is usually
calculated as a simple weighted summation. This ap-
proach leads to potential problems in the case where the
same goal triggers two or more behaviors and the utility
of a behavior lower in the hierarchy should not be the
sum of their activations. For example, in Fig. 2, theGet
Cachegoal feeds into theApproach Perceived Cache
and theApproach Remembered Cachebehaviors. The
Approach Perceived Cachebehavior has a much greater
chance of satisfying the goal, since it doesn’t involve
further travel to a possibly poorly remembered site.

A better activation function, used in BISMARC, bal-
ances strong preferences as well as aversion behaviors
(i.e.,Avoid Dangerous Places) (Tyrell, 1993):

Aj =
[

maxi
(
P+i j
)+ α¤N+

i=1P+i j
1+ α

]

+
[

mini
(
P−i j
)+ β¤N−

i=1P−i j
1+ β

]
(1)

where Aj is the activation output of a node, P+i j and
P−i j are the input positive and negative preferences, and
α andβ are weight factors inversely proportional to
the square ofN+ or N− which are the total number
of positive and negative preferences respectively. The
activation output of the behaviors associated with di-
rectional sensory inputs (shown as segmented ovals in
Fig. 2) are multiplied by the sensor stimuli before being
used by lower levels in order to suppress activation in
directions other than that favored by the sensors.

The weights on the links between modules are
heuristically determined based on mission goals. The
action selected at the lowest level of the FFH received
the highest number of votes. Fuzzy co-norm operators
for command fusion at the lowest level of the hierarchy
are common to the adaptive behavior system (Tunstel,
2001) and BISMARC. This method is but one of many
available (see Pirjanian, 1998 and references therein).
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Figure 2. Free-flow hierarchy action selection mechanism for cache retrieval mission scenario. Ovals represent inputs derived from sensory
stimuli, rectangular boxex are behaviors, and circles are temporal and uncertainty penalties. All weights on inputs to behaviors are 1.0 unless
otherwise noted. Segemented boxes and ovals represent directional inputs (only cardinal directions shown but in practice continuous coverage).
See text for further details.

4. Map Making Memory

Work in biologically inspired systems for robotic nav-
igation has a rich history (Mataric, 1991; Kortenkamp
and Weymouth, 1994; Touretzky et al., 1994). An
overview of other recent studies can be found in
Huntsberger and Rose (1998). Biological navigation
strategies can be characterized as a four level hier-
archy based on complexity analysis (Trullier et al.,
1997). The levels are: movement in relation to per-
ception (guidance), orientation with respect to land-
marks (place recognition triggered response), move-
ment along known paths (topological), and movement
with respect to a global map (metric). The Spatial Se-
mantic Hierarchy (SSH) is a framework that formal-
izes the relation between the four navigation strategies
using five inter-related representations of large-scale
space (Kuipers, 2000, 2001). These representations are
the sensory, control, causal, topological, and metrical
levels. BISMARC embodies aspects of this formalism
through the FFH (sensory, control, causal) coupled

with the STM (metrical) and LTM (topological) por-
tions of the system.

The STM is distributed in the sense that a detailed
occupancy grid (5 cm resolution) (Elfes, 1987) is kept
byDriveMapsof the last 12.5 m of travel, in addition to
the previous and current rover-state vectors (shown as
ovals in Fig. 2). These sensor readings are weighted by
a perceptual uncertainty based on the absolute differ-
ence between the related portions of the previous and
current state vectors. A wide swing in values indicates
a possibly faulty sensor, which is then monitored and
taken off-line if needed.

BISMARC’s map-based LTM is similar to that of
hippocampus place cells. Landmarks corresponding to
obstacles and goals are extensively mapped and stored
for comparison to perceived inputs, with a probabilis-
tic update of memories based on the positional vari-
ance of the rover and the match strength of the cur-
rent perception to memory contents. A LTM landmark
is encoded as a four-byte field that includes relative
height of the landmark (2 bytes), actions leading to
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the landmark (1 byte), and accelerometer readings on
the robot (1 byte). This approach is similar to the cou-
pled goal/representation approach of Mataric (1992)
and saves on-board memory use. An alternative ap-
proach is an occupancy grid that gives dense coverage
of the environment, but doesn’t scale well for long du-
ration planetary surface missions.

5. Experimental Studies

In order to determine the utility of BISMARC for
complicated planetary surface operations, we have run
2000 simulated multiple cache retrieval missions. A
single cache recovery scenario is shown in Fig. 3.
The sample acquisition rover filled its cache con-
tainer until it ran out of power and a second rover
with higher speed and mobility recovered the filled
container for return to Earth. Our simulation stud-
ies used three heterogeneous rovers (single scout and
two retrievers) and four cache containers. Mission suc-
cess was defined as the return of all four cache con-
tainers to a landing point. The experimental setup
included:

• Random starting and cache positions
• Timestep of 0.1 s
• 10% loss of traction in rocky terrain
• 1 sq. km study area (5 cm resolution)
• Top speed of 15 cm/sec

Figure 3. Autonomous rendezvous operation for a cache retrieval
scenario in the Arroyo Seco at JPL. Rover on left (Lightweight Sur-
vivable Rover) has a cache container (shown with arrow) that is being
retrieved using the robotic arm of other rover (Sample Return Rover).

Figure 4. Cache retrieval mission 329, with rover start position at
cross and path shown as solid line. Acquired cache containers are
shown as open circles and missed container as closed. Study zone is
1 km by 1 km and terrain variation is from−25 m to 300 m.

The scout has three sets of color stereo cameras, a 3
DOF manipulator and a thirty-five week battery life-
time supplemented with solar panels. Each of the two
retrievers has two sets of grayscale stereo cameras, a
5 DOF manipulator and a forty week battery lifetime
plus solar panels.

A birds-eye-view of mission 329 is shown in Fig. 4,
where grayscale is used to indicate height, a cross is the
starting position of the scout, the path is a solid line, and
the open and filled circles are the cache containers. In
this case the temporal penalty prevented the rover from
expending its batteries while attempting to satisfy the
recovery goal with the cache container in an inaccessi-
ble position. Also notable is the portion of the path that
skirts the slope (shown by arrow in Fig. 4) on the way
to the second cache container. The rover conserved its
power by staying on relatively level ground.

Our studies had a 98.9% mission success with no
component failures, a 12% success rate with compo-
nent failures and no fault tolerance, and a 46% suc-
cess rate with component failures and fault tolerance.
An analysis of the 54% of the missions that failed in
order to access the impact of a particular component
loss gives:

• Loss of tilt sensor(s)—12%
• Loss of stereo sensor(s)—10%
• Loss of wheel encoder(s)—8%
• Loss of battery power indicator—4%
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• Loss of internal temperature sensor—2%
• Other (mechanical failure, etc)—18%

This indicates that 28% of the missions failed due to
loss of sensors (tilt, stereo, power, internal tempera-
ture) that can easily be made redundant within mis-
sion constraints. On the other hand, in order to prevent
mechanical failures, it is extremely difficult to design
redundancy in the mobility sub-systems within mass
constraints.

6. Conclusions

We have developed a fault tolerant, autonomous rover
control system called BISMARC for multiple plane-
tary rovers. It is based on a blend of local path plan-
ning and hierarchical action selection. Fault tolerance
was incorporated using a STM update method based on
sensor perceptual uncertainty. This method enabled the
FFH action selection mechanism to maintain its overall
structure even under component failure. Of particular
importance for future NASA rover missions was the
analysis of the component failures, indicating that an
extra 28% of the missions would potentially be suc-
cessful with single redundancy of these components.
Our current directions include automated learning of
weights between levels in the action selection hierar-
chy giving the rovers the ability to adapt to chang-
ing environmental conditions such as dust storms, and
potential integration into our recently developed
CAMPOUT (Control Architecture for Multi-robot
Planetary Outposts) running on two prototype rovers
at JPL (Pirjanian et al., 2000; Schenker et al., 2000).
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