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Abstract—In this paper we predict the amount of slip an
exploration rover would experience using stereo imagery by
learning from previous examples of traversing similar terrain.
To do that, the information of terrain appearance and geometry
regarding some location is correlated to the slip measured by the
rover while this location is being traversed. This relationship is
learned from previous experience, so slip can be predicted later
at a distance from visual information only. The advantages of
the approach are: 1) learning from examples allows the system
to adapt to unknown terrains rather than using fixed heuristics
or predefined rules; 2) the feedback about the observed slip is
received from the vehicle’s own sensors which can fully automate
the process; 3) learning slip from previous experience can replace
complex mechanical modeling of vehicle or terrain, which is
time consuming and not necessarily feasible. Predicting slip is
motivated by the need to assess the risk of getting trapped before
entering a particular terrain. For example, a planning algorithm
can utilize slip information by taking into consideration that a
slippery terrain is costly or hazardous to traverse. A generic
nonlinear regression framework is proposed in which the terrain
type is determined from appearance and then a nonlinear model
of slip is learned for a particular terrain type. In this paper we
focus only on the latter problem and provide slip learning and
prediction results for terrain types, such as soil, sand, gravel, and
asphalt. The slip prediction error achieved is about 15% which
is comparable to the measurement errors for slip itself.

I. INTRODUCTION

The Mars Exploration Rover (MER) mission sent two rovers
to the surface of Mars which have been exploring it since
January 2004, collecting and returning invaluable scientific
information. Future planetary exploration missions are being
targeted to cover a larger variety of terrains, to drive faster, and
to navigate with a higher level of autonomy. More intelligent
planning is required in which various aspects of the terrain
and rover-terrain interaction are considered, so that the safest,
most efficient path is found.

One major problem, encountered in the ongoing MER
mission, is that the rovers experience a significant amount of
slip on certain terrains. The rovers can get trapped in regions
from which they cannot recover due to a 100% slip, which
can lead to mission failure, or can slow progress toward their
goals. Being able to automatically predict the expected slip
beforehand, using vision, can help prevent the rover from
going into regions unsafe to traverse, for example, to avoid
getting stuck in a sand dune, or to determine if it would be
possible to climb back out of a crater before descending into
it. Thus, the rover would be able to access more targets of
scientific interest in craters or on hills, which are avoided
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Fig. 1. Learning to correlate how things look to how they feel: the rover
collects visual information about the forthcoming terrain from a sequence
of stereo pair images, which is later correlated to the experienced slip at
the locations traversed by the rover. An image from the left stereo camera
displaying the rover’s future steps and the corresponding map cells (left), and
the measured slip on the future path of the rover (right). Slip is measured as
the difference between the commanded position per step (estimated by the
vehicle’s kinematic model) and the actual position (ground truth), normalized
by the commanded position.

in the current more conservative planning. The usefulness of
slip prediction is not limited to only planetary exploration.
Enhancing a path planning algorithm with information about
the terrain type to be traversed and the potential slip would
considerably improve robot mobility for any autonomous
ground vehicle.

In this paper we propose a method to predict the amount
of slip a planetary rover would experience using visual
information about the terrain. We hypothesize that visual
characteristics of the terrain can give clues to its physical
properties and the eventual rover-terrain interaction, one aspect
of which is slip. The main idea is to extract information about
the terrain observed from a distance (using information from
a stereo pair only), measure the slip of the rover when it
traverses this particular region, and create a mapping between
visual information and the resultant slip (Figure 1). We learn
this functional relationship using training examples, which
makes it possible to predict what the rover would experience
at a future location by only observing it at a distance. More
importantly, we use the rover’s own sensors as feedback to
the learning, which can remove the human-in-the-loop factor
for data labeling. To our knowledge, none of the previous
work has attempted to predict slip using only information from
stereo imagery. This idea may apply to predicting some other
properties of the terrain or the vehicle-terrain interaction but
here we concentrate only on slip.

Stereo imagery contains information about both the geom-
etry (from range data) and the appearance (from the input



images) of the terrain. This gives us the intuition that visual
information can also be used to predict slip, because, from
a mechanical point of view, slip depends again on physical
and geometrical properties of the terrain. The main issue
is how to utilize vision data to infer properties about the
terrain or predict slip. We propose a general framework in
which the task is subdivided into recognizing terrain type from
appearance and learning/predicting the slip behavior when the
terrain type is fixed. In this paper we mainly focus on the
latter problem, namely, learning the functional relationship
between terrain geometry and slippage, when the terrain type
is known. Recognizing the terrain type from appearance, which
is a problem of visual texture recognition [21], is on-going
work of ours and is beyond the scope of this paper.

In this work, we use slip measurements from real-life
terrains with all complications, such as uneven and nonho-
mogeneous terrain, clumps on the ground, or rocks in front of
the wheels, which can make the rover’s motion quite unpre-
dictable. The problem is further complicated by uncertainties
of predicting the terrain type from imagery and estimating
slopes from terrain geometry obtained by the stereo vision.

A. Previous work

Rover-terrain interactions. Slip can be defined as the
difference between the vehicle’s position estimated by its
kinematics and its actual position. However, it is caused by
complicated vehicle-terrain interactions [4], [20], [23], and is
very hard to model from a mechanical point of view. Slip
depends on the mechanical soil characteristics [20] which can
be further modeled [1], or can be crudely described by a few
parameters, e.g. cohesion and friction angle [4], [23] which,
in turn, need to be estimated. A method for online terrain
parameters estimation has been proposed in [11], but it is not
predictive, as its measurements have to be done at the traversed
location. The same applies to the method proposed for learning
of terrain types from vibrations [6]. Outside the realm of
mechanical modeling very few authors have addressed the
problem of estimating, characterizing, or counteracting slip
(with a few exceptions [9], [10], [12]), although slip has been
acknowledged as an omnipresent problem in localization, or in
rough-terrain mobility. In summary, from a mechanical point
of view, slip requires a complex and vehicle-specific modeling
and involves additional measurements about the terrain, which
might not always be feasible at a distance.

Mars Rover tilt-table experiments. Previous investigations
of the behavior of a Mars Rover on slopes have been done by
Lindemann [15]. The experiments consist of short traverses
on a tilt-table platform set to varying slope angles with the
rover approaching the terrain at different orientations. From
these tests we learn that slip is a highly nonlinear function
of terrain slopes [15], which is important for our choice of
learning method later in the paper. We have to note that the
measured slip values are applicable only for the particular
vehicle model (in this case MER). For example, a small design
modification in the pattern of the wheels can change the slip
behavior [3], affecting a potential physical model. We believe

that learning slip is a more general approach, namely, the same
learning algorithm can be applied to another vehicle to learn
its particular behavior on different terrains.

Slip compensation. A significant advancement in nav-
igation on slopes in high slip environments has been
achieved with the slip compensation algorithm by Helmick
et al. [9], [10], who demonstrated improved goal acquisition
and path following. The slip measured at a particular step is
taken into account to adjust the next step, compensating for
the distance which was not traversed. However, this does not
allow for planning at a distance, which our method enables.

Using slip to determine terrain characteristics. The work
described above concerns estimating slip from mechanical
measurements, or, in our case, visual information. Conversely,
slip measurements have been used to infer mechanical terrain
parameters on the Mars Pathfinder Mission in a controlled one-
wheel soil-mechanics experiment [17]. Similar experiments
have been done by [2], [11]. This gives us the assertion that
slip characteristics are directly correlated to terrain mechanical
properties and the intuition that if the terrain soil type could
be correctly recognized (which would entail its mechanical
properties) then slip behavior is predictable given the terrain.

II. EXPERIMENTAL SETUP
A. Testbed

This research is motivated mainly by planetary rovers, such
as MER, so we used Rocky8, a Mars research rover testbed.
For most of our experiments, however, we used an experimen-
tal LAGR robot (Figure 2) because it is a more convenient data
collection platform. It has two front differential drive wheels
and two rear castor wheels. It is equipped with a pair of stereo
cameras, wheel encoders, IMU, and GPS (the IMU and GPS
are postprocessed into a global pose). It can run in autonomous
mode or be manually joysticked using a radio controller. The
vehicle can achieve speeds of up to 1.2 m/s.

B. Quantifying slip

The amount of slip s per wheel can be defined as a
difference between the velocity measured by the wheel and
the actual velocity: s = wr — v [23], or can be normalized
s = %= [3], [11], where v is the actual linear velocity,
w is angular wheel velocity, and r is the wheel radius.
Similarly, to define slip for the whole rover we measure
the difference between the actual vehicle velocity and its
velocity from the kinematic model for each motion DOF
of the rover [9]. The actual position (ground truth) can
be estimated by visually tracking features, a method called
Visual Odometry (VO) [16], [18] or measured with some
global position estimation device. VO is a preferred method
for ground truth estimation because it is a convenient self-
contained sensor on the vehicle, so data collection for training
could be done automatically and the whole learning could
be done online onboard the vehicle, which coincides with
the goals of planetary exploration missions. Furthermore,
global positioning devices are not always available, especially
regarding planetary missions.



Fig. 2. Rocky8 vehicle in the Mojave desert (left), LAGR vehicle on a sandy
terrain (right)

To measure slip, in this paper, we will use the change
in position per step, instead of velocity, by normalizing, so
that each step takes the same time. A step is defined as the
interval between two consecutive stereo pair frames. In our
datasets, Rocky 8 stops after each step, while LAGR obtains
stereo frames continuously at a particular rate (5SHz). For
the kinematic estimate, we use a differential drive model for
the LAGR vehicle, and a full rocker-bogie kinematic model
for Rocky8 [9]. We consider the slip in the previous rover
frame (corresponding to the beginning of the step) which is
defined as follows: the X coordinate is along the direction
of forward motion, Y is along the wheel axis, and Z is
pointing down. We are interested in the longitudinal (slip in
X) and lateral (slip in Y) component of slip. We also consider
slip in Yaw which is the rotation angle around the Z axis.
Note that the LAGR vehicle has only three kinematically
observable DOF. Figure 3 visualizes slip behavior of Rocky8
and the corresponding measured slip in X and Y on a tilt-
table sand box (at 10°) where the vehicle traverses the platform
diagonally. VO estimates are used as ground truth. One should
note the significant slip downslope. The kinematic estimate is
above the commanded pose because throughout the run the
rover automatically adjusts its commands trying to reach its
goal waypoint with respect to its current position. We can also
notice some randomness in the slip behavior (which is due to
uncertainties in the terrain, noise in the vehicle kinematics and
measurement errors).

To draw our final conclusions later in the paper we normal-
ize slip by the commanded position (or velocity) in X (thus,
slip can also be expressed in %, as in Figure 1). This is more
natural because most of the issued commands are towards
forward motion, with an exception of a crabbing motion of
Rocky8 rover. There are very few steps of this kind in our
data so we can ignore them.

C. Visual Odometry validation

As we will be using the VO estimate as ground truth,
we need to quantify its precision. We compared VO position
estimates to ground truth collected with a surveyor total station
(TS), tracking a single point. The TS has ~2mm precision. The
whole run was ~7.5m in which the rover took 80 frames, each
step was targeted to be of size ~0.1m (the step size is selected
in the middle of the range used for our later experiments).
The VO error at the end of the run was 0.15m which is 2%
of the distance traveled. Considering performance stepwise,
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Fig. 3.  Traversed path by Rocky8 on a tilt-table platform (left) and the
corresponding position measured stepwise in the previous rover frame (right).
Slip is the difference between the actual position (measured by VO) and the
commanded position (estimated by kinematics). The tilt-table is covered by
deep sand. 10° slope. Significant slip occurs in the downslope direction.

we computed the standard deviation of the differences of the
distance traveled per step, as measured by the VO and the
TS, to be 0 = 0.0123m. This gives a 1-sigma error of 12%
on the ground truth measurement per step. Integration of the
step-wise VO errors (both positive and negative) necessitates
that the VO error of the entire run is smaller (in percentage)
than the stepwise error.

D. Sources of error in measuring slip

Some sources of error in measuring slip come from the
kinematic model and its assumptions. Systematic model errors
can be due to imprecise measurement of the wheel diameter,
different wheel diameters (the wheels might not be at their
nominal air pressure), or limited encoder resolution [5]. They
give a (usually small) bias in the measurement, but as our
slip measurement is done stepwise, it will not be significantly
affected by them. Random noise, coming from the terrain
and the vehicle-terrain interaction, would also affect slip. It
can be due to internal forces (castor wheels), external forces
(obstacles in front of any of the wheels), or varying wheel-
ground contact area (with the extreme case being when there is
no contact with one of the wheels). For example, inconsistent
slip measurement will occur when one of the wheels goes
over a rock because it will create more or less traction
compared to the soil, or can serve as an additional external
force to the vehicle. Differential drive makes a flat-terrain
assumption which is not always true in our off-road rough-
terrain data. Slip also depends on the commanded velocity,
although for the relatively small speeds of the rovers, velocity
is not a significant factor. We have factored it out by averaging
steps or driving at approximately constant velocity, but it will
still introduce a certain amount of noise. In summary, other
sources of error, which we do not take into consideration, will
contribute to noise in slip measurements.

III. SLIP LEARNING AND PREDICTION

In this section we describe a general framework to learn
the functional relationship between visual information and the
measured slip using training examples. We choose a learning
approach to the problem because creating a physical slip model
is extremely complicated due to the large number of variables



involved. Also, the mapping between vision information and
slip does not take a simple analytical form and the only way
to observe it and learn about it is through training examples.

A. Slip modeling

The amount of slip depends both on the type of terrain
traversed [20] and its geometry [15] in a nontrivial, nonlinear
way. We consider slip learning in a nonlinear regression
framework. Our inputs will be terrain geometry (captured by
slopes) and terrain type (described by its appearance, such
as texture and color); the outputs will be the slip in several
independent coordinates. As this is a very complex function,
we introduce some structure to make the problem tractable.
We can think of slip as a variable S which changes with
respect to the slopes of the terrain (let us term the dependence
of slip on slope angles as slip behavior). As the slip behavior
changes on different terrains, we can cast the problem into
a Mixture of Experts (MoE) framework [13] in which the
input space is partitioned into subregions (corresponding to
different terrain types). The appearance information is mostly
relevant in doing this partitioning. In each region (which
corresponds to a particular terrain type) one (learned) model
of slip behavior would be active, i.e. when the terrain type
is known, slip will be a function of terrain geometry only.
More formally, let I be all the information available from
stereo pair images. It can be represented by appearance (A)
and geometry (G) components. Specific representations of
appearance and geometry will be discussed in the following
sections; for now we consider them as abstract terms. Let
f(S|I) be the regression function of slip S (slip can be any
of the slip in X, Y, or Yaw) on the input variables A,G
(used interchangeably with the image information I). Now,
considering that we have several options for a terrain type 7',
each one occurring with probability P(T'| A, @), we can write
f(S|I) as follows:

F(SI) = f(S|4,G) = X1 P(T|A,G) f(SIT, A, G).

Naturally ), P(T|A,G) = 1. This type of modeling admits
one exclusive terrain type to be selected per image, or a
soft partitioning of the space, which allows for uncertainty
in terrain classification.We assume that the terrain type is
independent of terrain geometry P(T'|A,G) = P(T|A) and
that, given the terrain type, slip is independent of appearance

f(SIT, A,G) = f(S|T,G). So we get:
FSII) =227 P(TIA)f(SIT, G).

In other words, to conquer the slip learning problem we
divide it into a terrain recognition part, in which we determine
the terrain type from appearance information i.e. P(T|A),
and a slip prediction part, in which we learn slip behavior
with respect to terrain geometry f(S|T,G), given a particular
terrain type (Section IV). We take advantage of the indepen-
dence of appearance and geometry, which is a very reasonable
assumption. For example, a sandy terrain in front of the rover,

would appear approximately the same, no matter if the rover
is traversing a level or tilted surface. The MoE approach is
very adequate for our slip prediction problem because terrain
types do not represent a continuum in appearance space and,
in general, would form separate regions in the input space
(experts). However, several experts might need to be active
at the same time, to make smooth transitions in borderline
terrain cases. Both cases are naturally incorporated in the
MoE framework. The alternative to introducing structure in the
problem is pooling appearance and geometry features, which
will not only make the problem more complex, because of
increased dimensionality, but will also require a formidable
amount of training data. Moreover, the MoE framework is
quite general and, in principle, allows for different ways of
addressing the problems of learning to recognize terrain types
from appearance and different algorithms for learning of slip
behavior from terrain geometry. The mixing coefficients of
the MoE framework can be learned independently and handed
down by a terrain texture classifier [21] which can also assign
an exclusive winner-take-all terrain class (in this case the MoE
would work like a decision tree). They can also be learned
in conjunction with the slip behavior per terrain [14]. In the
following sections we focus on learning f(S|T,G) as a first
important step to realizing the whole MoE framework.

IV. LEARNING SLIP BEHAVIOR ON A FIXED TERRAIN

In this section we learn to predict slip as a function of
terrain geometry (called ‘slip behavior’) when the terrain
type is fixed. It is an important part in the general slip
prediction, as described above. Geometry will be represented
by the longitudinal and lateral slopes (see Section V for
details). From previous experimental evidence for terrain
types like sand [15], we know that slip behavior is a
highly nonlinear function of terrain slopes. So, to model
the nonlinear dependency f(S|T,G) (.e. f(S|G)) we
use receptive field regression [19], [22]. Locally linear
functions are learned in small neighborhoods which gives a
good tradeoff between memory based nonlinear regression
methods [8] and global function approximation methods,
such as Neural Networks. We shall note that modeling with
local nonlinear regression imposes very little restriction on
the functional dependency. It allows for it to be nonlinear but
does not assume any particular model, instead, the model is
learned from the data. The properties of the receptive field
regression approach that we find particularly valuable are:
the concept of a receptive field which makes keeping of huge
amount of data in memory unnecessary; the adaptability of
creating and removing receptive fields as needed; and the
possibility to easily extend the approach to online learning.
S(x) = f(S|G = x) is estimated as (for convenience, we use
x to denote the two slopes):

S(x) = ¥¢ K (%) (85 + i b(p5, X)),

where K(x,y) = e;cp(—w) is a smoothing kernel, x.

is a training example which serves as the receptive field



center, and p; are several local projections in each receptive
field c. In other words, the slip S, corresponding to a query
point x, is computed as a linear combination of C linear
functions (one per each receptive field), where the weights
are computed according to the distance from x to the centers
of the receptive fields. The centers x. could be computed
with a clustering type technique (e.g. k-means), or could be
allocated wherever needed in the input space as the data arrive
in an online fashion [19]. To estimate the parameters b{, pg,
a linear fit is done in each receptive field when the training
points are weighted according to their distance to the receptive
field center [19], [22]. Weighted linear regression and Partial
Least Squares (PLS) methods [8] are used to do the linear fit
in [19] and [22], respectively. We use the PLS based linear fit,
because it considers the outputs in selecting the most important
projections, although, for now, we do not need to do dimen-
sionality reduction because we are currently working with low
dimensional inputs. We parameterize the receptive field size by
only one parameter A\. More advanced structured kernels could
be applied as in [19], but they introduce additional parameters
to be learned, which would require a larger sample size, so
we use symmetric kernels. We select the parameter A using
a validation set. For example, the best selected A for our soil
dataset (described below) renders a kernel of local activity
within about 4° in pitch and roll angles.

V. COLLECTING TRAINING DATA

In this section we describe in detail the information we
extract for our training purposes. A 2D map of the environment
is built using range information from the stereo pair images.
The map has a cell representation with a cell size of 0.2m
x 0.2m The information kept per cell is its extents, average
elevation, and association (pointer) to an image (or images)
which have observed this cell. This is sufficient to retrieve the
required inputs when needed (i.e. when the cell is traversed)
and does not overburden the system with keeping huge volume
of data per cell, i.e. this is done in a fast and memory
efficient way. To collect an example for the training data we
do the following: for a particular location in the map (a 6x6
neighborhood of cells centered at the location) which is ‘seen’
by the rover at a distance, we can compute information about
appearance and measure the slopes (the input vector); when
the rover traverses this location the slip in X, Y, or Yaw is
measured (the output value). To be more efficient the data
collection goes in the reverse way: at each frame a map is built
and in each map cell the average elevation and the pointers to
images viewing it are stored, because it is not known which
cells are to be traversed. It is only after the rover traverses
some region that the particular calculations about slopes and
appearance representation are done to be able to use them as
training data. To estimate the slope at a particular location, we
do a local plane fit to the average elevation in each cell in its
neighborhood [7]. The slope is decomposed into a longitudinal
(along the forward motion direction) and lateral (perpendicular
to the forward motion) component with respect to the current
position of the rover. We will call them pitch and roll, since
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Fig. 5. Example images from some of the terrains collected by the LAGR
vehicle. Sand, soil, gravel.

they correspond to the pitch and roll of the vehicle. Slope
angles cannot be perfectly evaluated because of noise in the
range data and because the locally planar terrain assumption
might be violated. As each location in the map is seen by many
frames (as the rover approaches it), we average the roll and
pitch estimates to smooth some noise effects. VO is used for
the vehicle’s localization and the initial roll and pitch angles
of the vehicle (received from a postprocessed IMU) give us
initial gravity leveled frame to retrieve correct longitudinal and
lateral slope angles from the terrain. Localization is a crucial
point in the success of this method.

VI. EXPERIMENTAL RESULTS

In this section we give experimental results of learning and
predicting slip from terrain geometry (represented by slope
angles). Slope angles are computed using vision information,
as described in Section V. This information is immediately
available at each point of the local map (wherever there is
range data) so slip can be predicted at those locations without
the need for the rover to traverse them. Slip prediction error is
measured by the average absolute error, Err=Y"" | |P;—T;|/n,
or by the RMS, RMS=\/>"7"_ | (P; — T;)?/n, where P; is the
predicted and 75 is the target slip at a particular step 4. The
latter is more adequate for measuring the error of a regression
function but is more prone to outliers and can give an incorrect
idea of the error. We report below both training and test error.
The training data is used to learn the regression function
(Section IV). After learning, the function is tested on the same
data (training error) and also on data not used in training (test
error). Naturally the training error will be smaller, but the test
error is a criterion for the learning method’s generalization
abilities, i.e. how well it will perform on new, unseen data. We
do training and testing pointwise, i.e. not considering potential
correlations between consecutive points, which do exist, and
can be exploited in a more advanced prediction algorithm.
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Prediction of slip in X on soil (left column), gravelly transverse slope (middle column), and flat sandy terrain (right column). Training mode (top),

test mode (bottom). The step size is ~0.2m for soil and gravel, and 0.06m for sand. LAGR vehicle.

To be able to measure the test error, we predict slip only on
locations traversed by the rover but in principle, as mentioned
above, prediction could be done on the whole visible map.

Our first results of learning and prediction of slip behavior
are for the Rocky8 rover traversing sandy slopes in the Mojave
desert. Figure 2 (left) shows the terrain where the data was
collected. The dataset consists of about 200 steps and is taken
on slopes which range from -5° to 10° in pitch and up to 12°
in roll. Results for learning slip in X are given in Figure 4.
Slip is measured in meters per step (a step is ~0.22m). As
the step size can vary slightly we average the slip across
several neighboring steps. The ground truth for this dataset is
obtained with a Total Station. Slip prediction captures correctly
(with error for the whole data within 5%-7% of the traversed
distance per step) a slip of about 20% for high pitch angles. We
have to note that this dataset is rather small for learning (200
examples total). We split the data randomly into training and
test portions which leaves us with only about 100 examples
for training. For all the other experiments in this paper we
perform a sequential split of the data into train and test. The
latter is a more realistic scenario than the random split because
the robot is expected to train on some portion of the terrain
first and then continue to traverse the terrain applying what
it has learned (testing). It is also more difficult because the
distribution of input variables during training might shift to
unexplored regions while testing, which makes it much harder
to generalize. For example, note that in this dataset there are
combinations of roll and pitch angles in the second part of the
data (if split consecutively), which have not been seen in the
first half to allow us to do a reasonable sequential split.

A second set of experiments was done with the LAGR
vehicle in a park. The dataset is composed of the following
terrain types: a soil terrain (with small rocks) in which the
terrain profile goes up and down, a gravelly terrain, but on a
transverse slope, a flat sandy terrain, leafy/woodchip ground,
and asphalt terrain (Figure 5). We focused mainly on terrains
which are significant for planetary exploration and provided
the latter two for comparison only. To do learning, for each
terrain type we take the frames up till some time for training,
and test on all the frames after that. This is the sequential
split of the data, as described above. The first 45% of the
data is used for training, the next 10% for validation and the
remaining 45% is used for testing. The data is taken by either
manually joysticking the rover (soil and gravel datasets) at
a speed of about 1 m/s, which can create certain variability
in the commanded velocity, or by controlled straight constant
velocity drives at 0.3 m/s (all the remaining datasets). The VO
estimate is used as ground truth. Slip is measured in meters
per step, each step is 0.2 seconds, which gives step sizes
of ~0.2m and 0.06m for the above mentioned datasets. The
results of slip prediction with the LAGR vehicle on sand, soil
and gravel are shown on Figures 6, 7 and 8. Figure 6 shows
both training and testing data for slip in X. The soil dataset
consists in going up and down a slope twice which helps the
testing because similar slope angles have been seen in training.
However, this does not happen in the gravel dataset where
there is very little variability in the data it was trained on; still,
it manages to generalize well. For the gravel dataset we used
the vehicle’s tilt angles (from the IMU) instead of the ones
from the visual information because of localization problems



0.12m

0.10m

0.08m

0.06m

0.04m

0.00m

-0.12m

-0.10m

-0.08m

-0.06m

-0.04m

0.00m

Fig. 7.  Predicted slip in X on the future path of the robot (left) and
the actually measured slip (right) on soil terrain. Top: robot going upslope,
bottom: downslope. Red and blue color coding determine the sign of the
slip: red - positive slip (usually occurring upslope), blue - negative slip
(downslope). Brighter colors correspond to large amplitude of slip. Black
marks zero slip. It has been learned successfully that going downslope on
soil terrain there is a small negative slip, whereas going upslope (the same
slope) there is much larger positive slip, see also Figure 6 (left). Note the
discontinuities in slip ground truth (right column) which are due to random
noise or occasional errors in the ground truth. The step size is ~0.2m.

(due to occasional large rotations between consecutive frames
which resulted in incorrect position estimates), but as seen
later, with good localization there are no significant differences
between the two (Figure 10). Figure 8 shows test data for
both slip in Y and Yaw on a transverse gravel terrain. An
interesting functional dependence is learned for slip in Yaw:
large slip in Yaw, corresponding to large pitch angle, is learned
whenever the roll angle is large, but an almost zero slip in
Yaw is learned when the roll angle is small, no matter that
pitch angle is large. Small but consistent slip in Y is observed
whenever the roll angle is large; this dependence could be
learned by our algorithm, although it is of the order of a
centimeter and is hard to notice on Figure 8. Unfortunately,
the LAGR vehicle mobility in deep sand turned out to be
extremely poor. On a flat sandy terrain the vehicle experiences
a consistent slip of about 80% (see Figure 1, compare to the
mobility of Rocky8 on sandy slopes, Figure 4). So it was not
possible to collect a dataset on sandy slopes with the LAGR
vehicle. The consistent 80% slip in sand forces a constant
function to be learned (Figure 6), which is quite natural in
this case. Other uninteresting slip behavior from a learning
point of view in our dataset is on asphalt and woodchip/leafy
ground (Figure 9). Similar to sand, a constant function is
learned, because the algorithm could not find any significant
correlations with slope angles. On average we get a slip error
of about 3%-15% for all the datasets (except for gravel, with
27% MSE, corresponding to 16% absolute error, which is
achieved in a hard to generalize learning setup). This is quite
a satisfying result in this type of data where a lot of noise is
involved (recall that the 1-sigma VO error is 12% per step).
In general, our results show very promising prediction of slip
in real off-road outdoor environments.

During training we can also use the robot’s (postprocessed)
IMU to measure the vehicle’s tilt angles and compare them
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Fig. 8. Predicted slip in Y (left) and in Yaw (right) on a transverse gravelly
slope. A small amount of negative slip in Y is learned consistent with the
large roll angle, no slip in Y could be detected in any of the other datasets
for this vehicle. Test mode. The plots for the training mode are not shown to
save space. The step size is ~0.2m. LAGR vehicle.
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Fig. 9.  Slip prediction in X for the trivial cases of asphalt (left) and

woodchip/leafy ground (right). The observed slip is close to 0 independent of
the slope. Test mode. The plots for the training mode are not shown to save
space. The step size is 0.06m. LAGR vehicle.

to the slope angles which were computed from the range data
using visual information (Figure 10). Our results show that the
estimated slope angles (from vision information) approximate
the angles given by the IMU, although we have to be aware
that both are, in general, noisy measurements of the actual
slope angles: the IMU based measurement gives the tilt of the
robot, not of the ground plane, which might be erroneous if
the robot traverses a rock, for example; the geometry based
slope estimation is susceptible to outliers and can be wrong if
there are obstacles in the plane fit area, or a slope estimate can
be missing if there are not enough cells under the robot to do
a plane fit (this can happen due to missing range data e.g. in
sparse vegetation or at the borders of the map). Slope angles
estimated from vision data are much smoother (especially for
the datasets with smaller speed) because several steps fall in
the same cell and because they are averaged measurements. We
summarize and compare the slip learning results when learning
with respect to the vehicle’s tilt angles and with respect to
the slope angle estimates which come from visual information
only (the latter results have been explored in detail in this
section). As seen in Table I, the learning results from both
estimates are comparable but the learning from terrain slope
angles might potentially benefit from more robust methods for
linear fit.

In this section we have shown learning and prediction of slip
behavior when the terrain type is fixed. From our results we
can conclude that learning of slip is possible and can lead to
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TABLE I
SUMMARY OF THE RESULTS. TEST ERRORS FOR SLIP IN X FROM SLOPES
EXTRACTED FROM VISION INFORMATION AND FROM THE VEHICLE’S TILT.

Dataset Step size(m) | RMS(%) Vision info  RMS(%) Veh. tilt
Soil ~0.2 12.5 12.0
Sand 0.06 15.3 14.8
Gravel ~0.2 N/A 27.8
Asphalt 0.06 3.8 3.6
Woodchip 0.06 5.6 5.8

successful prediction. We want to note that from a mechanical
point of view slip behavior of rigid wheels (Rocky8) and of
pneumatic wheels (LAGR) is described by different physical
models, as well as, slip on off-road terrains, such as soil
and sand, is modeled differently from slip on a rigid surface,
such as asphalt [23]. Nevertheless, we could learn all those
different behaviors from examples because of the flexibility of
our learning approach to adjust the learning model according
to the data.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a method to learn to predict slip, which
is the result of a complex vehicle-terrain interaction, using
vision information only. Our algorithm gives very satisfactory
results of slip prediction, given the fact that a lot of noise
is involved in measuring it and that the dataset is taken on
completely natural off-road terrains. Slip prediction results can
be incorporated into a more intelligent path planning algorithm
in which regions with potentially high slip would be avoided
or more adequate control commands will be issued taking into
consideration the expected slip. The importance of this method
is that the input information, obtained from stereo imagery, is
available at each location in the map (wherever there is range
data) so we can potentially predict slip at each seen, but not
necessarily traversed, location.

This paper makes a step forward in modeling and learning
in complex environments without involvement of detailed
mechanical models. We have proposed to map the appearance
and geometry of the forthcoming terrain to its mechanical
properties, measured when the robot traverses it, and learn
this mapping. Our approach is to first recognize terrain type
from its appearance and then learn/predict the expected slip

from terrain geometry, the latter being the focus of this paper.
Slip prediction from visual information does not undermine
the merit of mechanical modeling of terrain, instead, it exploits
sensory information which is unavailable or not yet utilized by
mechanical models (such as vision) and thus can be comple-
mentary to them. An important area of research would be how
to combine the two different levels of sensory information.
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