Autonomous Stair Climbing for Tracked Vehicles
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Abstract—In this paper, we present an algorithm for au-
tonomous stair climbing with a tracked vehicle. The proposed
method achieves robust performance under real-world condi-
tions, without assuming prior knowledge of the stair geometry,
the dynamics of the vehicle’s interaction with the stair surface,
or lighting conditions. Our approach relies on fast and accurate
estimation of the robot's heading and its position relative to
the stair boundaries. An extended Kalman filter is used for
quaternion-based attitude estimation, fusing rotational velocity
measurements from a 3-axial gyroscope, and measurements of]
the stair edges acquired with an onboard camera. A two-
tiered controller, comprised of a centering- and a heading-
control module, utilizes the estimates to guide the robot fast,
safely, and accurately upstairs. Both the theoretical analysis
and implementation of the algorithm are presented in detalil,
and extensive experimental results demonstrating the algorithm’s
performance are described.

Index Terms— Stair Climbing, Autonomous Robots, Inertial
Sensing, Attitude Estimation, Computer Vision.

Fig. 1. Robot climbing stairs autonomously. Picture taken at the Digital

Technology Center, University of Minnesota.
I. INTRODUCTION

TAIRWAYS and steps are omnipresent in man-made

environments. Designed to easily bridge large verticalr cise operation while at the same time reducing the user
distances for humans, stairs represent a serious challeng £ P 9
. ..~ load.
vehicles and robots. In order for robots to operate efficiently

in urban environments, this challenge needs to be addressed.ne controller employed for autonomous stair climbing re-
Robotic stair climbing can be applied in numerous scenarigi!ires frequent and precise estimates of the vehicle’s position
for example, in urban search and rescue missions, in milit#{)d heading relative to the staircase, in order to safely guide
operations, to increase mobility of handicapped people, ruP the stairs. The motion profile (high slippage, shocks)
to improve the efficiency of household helping robots. F@nhd the complex interactions of the robot tracks with the

these reasonsutonomousobotic stair climbing has been theStair render exact modeling of the vehicle-ground dynamics
subject of ongoing research in the last years. intractable. Besides, an overly detailed model would prohibit

In many current applications, mobile robots are still teldh algorithm from being flexible and robust over a wide range
operated, with only limited autonomy. Climbing stairs, as fo?f parameter values, such as stair dimensions and surface
example required in search and rescue missions in urban ar83@erial. At the same time, the number of required sensors
is very demanding on a human operator [1]. Usually the rob8f the robot should be kept as low as possible in order to
maneuvers outside the field of view of the operators, forcifginimize cost, weight, and power consumption. In order to
them to rely only on feedback from the robot's camera. THBaximize speed and reduce the risk of collision or toppling,
latter is usually mounted very close to the ground, hasifiS necessary to maintain the robot heading approximately
narrow field of view, and the returned images are often blurr@grpendicular to the stair edges. This can be accomplished
due to the robot's highly dynamic motion. This greatly imbPy @ heading controller based solely on vehicle dynamics, if
pairs the operator’s perception of the vehicle’s current Spatﬁ;gmbmed with an accurate, high-bandwidth attitude estimator.
orientation. Combined with the latency in data transmission In this paper, we outline an algorithm that allows robust,
and the robot’s high slippage on the stair edges, this caafe, fast, and accurate traversal of stairs of various dimen-
result in inaccurate and slow stair climbing, collisions witisions, using a 3-axial gyroscope and a single camera as the
the stair walls, and even in toppling of the vehicle. It i®nly sensors. An extended Kalman filter (EKF) integrates
therefore desirable to endow a robot wilitonomous stair- the angular velocities measured by the gyroscopes to form
climbing capabilities thus enabling faster, safer, and mor@n orientation estimate. This estimate is then updated using

L _ _ ~ measurements of the projections of stair edges, extracted from
_~ University of Minnesota, Department of Computer Science and Enginegiie camera images. Furthermore, the stair edge observations
ing, Minneapolis, MN,{mourikis, trawny, stergigg@cs.umn.edu . . , .

@llow estimating the robot's offset relative to the center of

2 Jet Propulsion Laboratory, California Institute of Technology, Pasade . :
CA, dhelmick@robotics.jpl.nasa.gov, Ihm@telerobotics.jpl.nasa.gov the staircase. These values are used by a two-tiered controller
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Fig. 2. The block diagram of the stair-climbing algorithm.

(cf. Fig 2) to guide the vehicle upstairs. This algorithninterpolated as needed. Therefore, BARt-UH can be consid-
is very versatile and can be applied, for example, on a@med an autonomous stair climber. However, the demanding
iRobot PackBot [2], as the one used in our experiments (cfontrol of a legged robot, due to its higher center of gravity
Section V), on a Remotec Andros remote vehicle [3], or cand its intricate actuation, result in high computational load
any tracked robot equipped with gyroscopes and a cameraand overall system complexity. This severely limits the robot’s

The remainder of this paper is structured as follows. Aftapeed during stair climbing.
an overview of related work in Section I, we present our The humanoid robots of Sony and Honda, QRIO and
algorithms for estimating both the robot’s attitude as well &SIMO, are also capable of autonomous stair climbing.
its deviation from the center of the stairs in Section Ill. OUQRIO [7] employsstereo visionto segment planar surfaces.
proposed control algorithm is outlined in Section IV. We havEhese surfaces are used in a path planning algorithm that
successfully implemented and tested these algorithms orallows the robot to climb up and down stairs, sills and ledges.
tracked robot, for which we present experimental results in [8], Hirai et al. outline the foot placement algorithm
Section V. employed in Honda’s humanoid ASIMO. Both robots use

dense stereo vision, requiring the robots to move slowly in
Il. RELATED WORK order to ensure image quality.

Stair climbing has been carried out with robots usin Stair climbing with a hexapod robot has been demonstrated
different types of locomotion. One can roughly distinguisRY Mooreet al. [9]. The robot RHex makes use of a special
wheeled, legged, and tracked robots. curved leg design and pre-programmed leg trajectories, ren-
dering it capable to climb stairs of various dimensions. The
A. Wheeled Robots employed algorithm, _hc_>wever_, is strictl;pen-loop It is thus

unable to prevent collisions with the stair walls or balustrades,

Wheeled robots usually have to resort to mechanic exteshd cannot compensate large heading deviations induced by
sions to overcome stairs. One application of such a techniggypage or shocks.

is in patient rehabilitation, where stair climbing could greatly
enhance mobility, and thus quality of life, of people con- _ :

fined to wheelchairs. Lawn and Ishimatsu [4] present a staﬁ-‘ Hybrid Locomotion _ o

climbing wheelchair using two (forward and rear) articulated Matsumotoet al. [10] have devised a hybrid biped leg-
wheel clusters attached to movable appendages. The robovgeled system, combining the advantages of wheeled lo-

equipped with step-contact sensors, but relies on user steeiggiotion with the greater flexibility of legs. They derive
and is thus onlysemi-autonomous a wheel torque control algorithm to robustly position the

robot’s center of gravity, using gyroscopes, accelerometers,
encoders, and torque/force sensors for feedback. The robot
o i , forward-tilt angle is estimated by a combination of angular
In [5], Figliolini and Ceccarelli present the architecturg,q|,city integration and gravity vector measurements, although
of the bipedal robpt EP-WAR?2, that uses electropneum_a%tans about the estimation of the center of gravity location
act_uators and sucnop cups for locomotion. In order t.o climBe omitted. The torque derivations are based on a quasi-
stairs, the robot relies on aapen-loop control algorithm g4 analysis, assuming low robot speed and smooth motion.
implemented as a finite-state machine. The main limitatiqf, eqver, ‘the stair dimensions are used as parameters of the

of the approach is that operating in a different staircag@ntrol |aw, but are not estimated online and therefore need
necessitates manual recalibration. to be known a priori

Albert et al. [6] implemented a stair-climbing algorithm on
the bipedal robot BARt-UH. The authors emplsigreo vision
and the projection of a laser line in order to estimate stdf- 1racked Robots
dimensions. These are then used in a planning algorithm thaGeveral works have examined stair climbing for tracked
produces piecewise analytical joint trajectories. The trajectargbots, which is within the focus of this paper. Tracked robots
parameters are tabulated for different stair dimensions ahave a larger ground contact surface than wheeled vehicles,

B. Legged Robots



and are more stable than bipeds due to their low center
gravity. Liu et al.[11] derive the fundamental dynamics of the
stair-climbing process for a tracked robotic element, analyzit
the different phases of riser climbing, nose crossing, no
line climbing and the effects of grouser bars or cleats. Tt
analysis is limited to 2D, and slippage, shocks, and intermitte -2 | : ]
loss of track-surface contact, phenomena that are commo -3, s . p . n = 1a
encountered during stair climbing, are neglected. The resulti

model is therefore not sufficiently accurate to allow exa

trajectory prediction, but is well-suited for preliminary desigi

studies of one- and multi-element tracked robots. 57

In [1], Martens and Newman note the difficulties involvecs
in teleoperated stair climbing of tracked robots. This tasg
is very demanding on the operator, due to limited sens
feedback and track slippage. The results are slow speed i
inaccurate heading, which can lead to toppling of the robot. 0 2 4
order to allow semi-autonomous stair climbing, they develop
a stabilizing feedback controller that enables the robot fq. 3. The time-evolution of the robots roll and pitch angles during a
maintain its heading, using only accelerometers. Howevéfgical ascent. Note the significant variation in the pitch angle.
the fact that accelerometers measure both gravity and body
accelerations can lead to large errors when employing these
sensors to estimate the robot's attitude. the squaredy-intercept of the line on the image plane. This

Steplightet al. [12] rely on measurements from sonar, &Pproximate yaw measurement and its associated variance
monocular camera, and two accelerometers for attitude estirtfathen provided to the EKF as an inferred measurement in
tion. The authors argue that these sensors are complement@iger to update the attitude estimates. However, the imprecise
each providing reliable estimates under different condition@Pproximations of both the derived yaw and its variance
An example is the above-mentioned use of acceleromefi&grade the resulting attitude estimates.
measurements to infer attitude using the gravity vector: thisThis paper further improves the work presented in [14], in
provides quite accurate results when the robot is standiitggt @ new measurement model is derived that alltigist
still, but fails when the robot is subject to shocks and bump#tegrationof the visual information (that is, the detected stair
A so-called “broker module” determines which estimate tedges) into the EKF, thus increasing robustness and accuracy
use at every time instant, depending on a confidence measefréhe attitude estimate. Additionally, an improved method to
provided by each sensor. This confidence measure is largéBtect the ratio of the distances to the left and right wall is
based on heuristics, and is often inversely proportional to théesented, based only on camera and gyroscope data. This is
deviation from the prior attitude estimates. used for maintaining the robot'’s trajectory along the stair cen-

An approach for determining the robot’s heading usingy ter, thus decreasing the risk of collision with the balustrades.
monocular vision is presented by Xiong and Matthies [13Employing a camera for updating the attitude estimates, and
The algorithm extracts lines from stair images in order tkeeping the robot close to the centerline, eliminates the need
determine the two quantities necessary for steering contrislf a laser scanner, resulting in reduced mass, volume, cost,
namely (i) the offset angle describing the robot headirgnd power consumption. The presented analysis shows that
relative to the stairs, and (ii) the ratio of the distances to the |gfur measurement model allows observability of two degrees
and right boundaries of the staircase, which is an indicator fof freedom when only stair edges (parallel to one global unit
the relative distance from the centerline. This work is extend&éctor) are detected. Furthermore it is proven that the robot
in [14], where an EKF is used to fuse 3D attitude informatiottitude becomes fully observable if at least one additional
from gyroscope measurements, vision, and a laser scanfigg (of known global direction, different from that of the stair
The high frequency of the inertial measurements, and thuse&siges) is detected in the image (cf. Appendix IlI).
the EKEF, allows for high-bandwidth control that increases the
robustness and accuracy of stair climbing significantly.

One of the main drawbacks of both [13] and [14] are the
ad-hoc assumptions underlying the computation of the yawTo safely control the robot’s trajectory on the stairs, precise
estimate and its variance from the images. First, it is assumestimates of the robot’s attitude, as well as of the distance
that the robot is oriented parallel to the plane of the staiatio to the left and right boundaries (e.g., walls or railings)
edges at all times (i.e., zero roll and constant pitch). This doek the traversable surface of the stairs, are necessary. Due
not reflect the pronounced disturbances induced by slippagethe highly dynamic robot-surface interaction, resulting in
and bouncing (cf. the roll and pitch angle profiles during stagignificant slippage, odometry is not sufficiently accurate and
climbing shown in Fig. 3). Second, when the projections oéliable for this task. Instead, we employ an EKF to fuse
the stair edges on the image plane are processed to estimatational velocity measurements with measurements of the
the yaw, its covariance is approximated by the inverse pfojections of stair edges on the camera images. In this
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II1. ATTITUDE AND DISTANCE RATIO ESTIMATION



product of quaternions is defined such that it corresponds to
the product of rotation matrices in the same order, i.e.,

7Co- 1€ = FC(faeiq) (2)
where/ C is the rotation matrix that expresses the basis vectors
of frame {1} in terms of frame{.J}. We use the quaternién
q = Lgto describe the global framig>} expressed in the local

robot frame{L}. The correspondence between quaternion and
rotation matrix is given by

¢C(q) = Iy — 2qu|a x| +2|q x| (3

Fig. 4. The robot on the stairs with the defined frames shown: The globwalhereLq XJ denotes the skew-symmetrlc cross-product matrix

frame {G} affixed to the stairs, the local framiel}, attached to the robot, 0
and the camera framfC'}. The width of the stairs is denoted hy.

—q3 q2
lax]=| g 0 —a 4)
-2 ¢ 0

section, we describe the various components of the estimat©ar controller uses as inputs the yaw and pitch angles, which
algorithm. can be extracted from the rotational matrix following the Euler
X-Y-Z angles (roll-pitch-yaw) convention [22].
] o 3) Attitude Kinematics:The time evolution of the quater-
A. Attitude Estimation nion depends on the rotational velocityof the robot. Given

1) Dynamic Model replacementn order to estimate the w, the attitude is governed by the differential equation
robot’s 3D attitude, it would be desirable to precisely model . 1 -
the robot dynamics, and treat the control commands as inputs. q(t) = 5 Qw(?) q() (5)
In our approach we employ sensor modeling instead, using
measurements from the gyroscopes to propagate the attitude —|wx]| w
estimate, and camera information to update it. The main Qw(t) = —w?T 0 (6)
reasons for th|s are: (i) dynamic modeling is d.epend.ent ?I’I:I] order to compute the attitude during robot operation, we
robot and stair parameters, and would thus require calibration . S
. . . employ a first-order numerical integrator [23] for the quater-
for every new stair, and (ii) dynamic model-based observers . . . . .
: . lon, assuming that evolves linearly during the integration
require a large number of states that increase the compLﬁraﬁe Step Al — ¢ + Under this assumption. we can
tional needs without producing superior results. This has bei%rge ratepE (_5) Zgl L ption,
documented in the literature before; the interested reader is 9 9
referred to [15], [16] and [17] for a detailed discussion. 1 1
dons = [exp ( Q(wa)At> b () o)

2) Attitude RepresentationThe robot’s attitude describes 48

the relationship between the global coordinate frafide}
and the robot-fixed local coordinate frar{é.}. As shown _Q Q AT 7
in Fig. 4, {G} is affixed to the stairs, such that thyeaxis is () (wk“)) 1 "
parallel to the edges of the steps and thaxis is pointing

upwards. Additionally, we define a camera-fixed coordina{%here Wil T Wy
frame {C'}, whose relationship to the local fram§L} is Wa = 2 ®)
known and constant. denotes the average rotational velocity during the integration

The Euler angles yaw, pitch, and roll, which are the mogiterval [t,., #),.1].

commonly used attitude representation [18], are subject tog) Gyroscope Sensor Modelnstead of the true rotational
singularities. The direction-cosine matrix, another populggiocity required for the quaternion integration, the gyro-
representation, suffers from redundancy, comprising nine elgpes provide only a noise-corrupted measurement The
ments of which only three are independent. We have therefgjigjective of the EKF is to obtain an estimate of the atti-
selected the quaternion attitude representation, allowing f9ge by fusing these gyroscope measurements with additional
compact, singularity-free, and efficient attitude computatiopyformation from a monocular camera. During propagation,
The following derivations are largely based on [17], [19] anghe rotational velocity measurements, are integrated. The
can be found in more detail in [20]. resulting estimate is corrected using stair-edge observations
The four-element unit quaternion of rotation is defined agrom the camera in the update step, which will be discussed
o in Section 111-A.9.
q= {q} = [k Sm(aqﬂ)} , gig=1 (1) In order to obtain the estimate, the EKF requires knowledge
g4 cos(6/2) of the measurement noise characteristics. Noise in gyroscope

wherek is the un_it vector along the axis of roFation, afd  1ror clarity of notation, we will henceforth drop the prescripts and simply
denotes the rotation angle. Using the convention of [21], thenote the quaterniofg representing the robot's attitude @s



measurements is known to be correlated [19]. We thereforeSubstituting Egs. (16), (17) in (5), and (15) in (10), we can
employ anoise shaping filtermodeling the measured rota-derive the system propagation equation for the continuous-time
tional velocity w,,, as the true valuev corrupted by the drift error state [20]:

rate biasb and drift rate noise,. The bias itself is modeled r ¢ _lox] -T 56 1 0 n
as a random walk process and included in the state vect{n : } = [ 3X3} {Ab} { 3x3 3X3] [ r]
ie,x = [¢8 bT] le' The gyroscope measurement modet™ 3

can hence be written as &x=F.-x+Gc-n (19)

The covariance of the noise vectoiis E[nn?] = Q.5(t—t')
m(t) = w(t b(t (T 9 . . . . . ¢ !
s .( ) =w(®)+bt) +n.(t) ©) where Q. is a block-diagonal matrix, with diagonal elements
b(t) = nw(t) (0) 42 1,5 and o2, T35 (cf. Egs. (11) and (12)).
wheren,, n,, are independent, additive white Gaussian noise 6) State Propagat|on:Eor 'mp'emema“of‘ on a _d|g|tal
processes with zero mean computer, we need to discretize the continuous time state
model. Based on Egs. (9) and (10), the discrete-time gyroscope

Elne()] =0,  En(t)n,(#)7] = 0% Lysd(t — ) (11) model can be written as

03x3 03x3 033 Isx3| [nw

E[HW(t)] =0, E[HW(t)HW(t/)T] = 0120613><35(t - t/) (12) Wi = W, — b — 0y, (20)
In the above expression,:) denotes the Dirac delta function. Pip1 = Dbk + D (1)
The state space model is and thus the estimated values of these quantities are computed
N _ as
|:q:| _ [%Q(wmbnr)q (13) . N
b Ny Witk = Wy — Pryijk (22)
& x = f(x,wn,n) (14) bt1jk = by (23)

Note that the updates using the line measurements frde subscript-), 1, denotes the estimate at time step- 1
the camera will also affect the bias estimates through teenditioned on all available measurements up to time step
correlations between bias and quaternion. In order to propagate the attitude estimate, we employ the
5) Continuous-Time Error-State ModeTFhe error state of guaternion integrator of Eq. (7) with the estimated rotational
the proposed attitude estimator includes the error in the bi¢glocity w.
and the quaternion estimate. While the bias error is defined ag) Covariance Propagation: The error-state equation
the vector difference between the true and the estimated bidd- (19)) is discretized as

b andb respectively, Rpp1 = ®p - Xp + Ny (24)

Ab=b-b (15) In order to implement the discrete form of the covariance

ropagation equation of the EKF, we need to determine the

a-mu|t||_||o I|cat|;;]e errt?{ r((japresentfatmn :js lchdosent:]or _thfg .?ua.teg'ate transition matrixp;, as well as the discrete-time system
nion. Rere, the attitude error IS modeled as the INNIeSIMal; o oy ariance matriQg. Assuming thatw is constant

roFat|;)r:_ thatl caus?s the esltlml;altedtha}ttlFude to maté:h the t%{fer the integration time steft¢, we can compute the state
orientation. In quaternion algebra, this is expressed as i ot as

mmmbmﬂfwnmm) (25)

t

7=04R(e6q=q®q " (16)

Application of the small angle approximatioid, ~ 0 =

cos(66,/2) ~ 1, sin(66,/2) ~ 66,/2 leads to while the discrete-time system noise covariance mafixis
R A computed according to
sa— |ksin(60,/2)1 | 1kdb,/2| _ £66 17) toin
cos(06,/2) | — 1 1 Qu= B (tpi1,7)G(T)QGY (1)@ (ty 1, 7)dr

ti

As evident from Eq. (17), the error information is containeﬁihe detailed expressions fob and Q, can be found in
primarily in the tilt angle vectobs ;. Therefore the attitude Appendix I. For clarity of notation, from now on we denote

uncertainty can be represented by & 3 covariance matrix
y P B &3 d‘I’(tkH,tk) = ®Py.

T . .
E[(w §0 J, thus circumventing Fhe IC,)SSLTOf rank that WO.UI Following the regular EKF equations [17], we can compute
arise in ad x 4 covariance matrix [6gd¢"] due to the unit w0 covariance of the propagated state estimate as
quaternion constraint.

The error state vectdrof the EKF is given by Pk = ®uPy®) + Qq (26)

_ 50 In order to increase the accuracy of the attitude estimates, it
X=1Ab o1 18) s necessary to usexteroceptiveneasurements of features in
X B . A . .
the robot’s environment, to periodically update the orientation
2Notice that the state vectot is of dimension7 x 1, whereas the error €Stimates. In the application under consideration the most
state vectok has size6 x 1. prominent features are the stair edges. We have therefore



developed an algorithm that processes the images recorded the time that the line measurements become available to

by an onboard camera, detects the projections of the sthie filter, the covariance matrD?Hd‘k is determined as

edges, and employs these observations to update the attitude

estimates. Priak = {
8) Addressing Processing Delay$n our implementation,

the gyroscope measurements are processed at a rate of 108{fgre

Prian -7:k+dek}
31
PusFira P 1)

whereas the time needed for processing each image is approxi- a-1
mately 60msec. In order to treat the existing processing delays, Fiva =[] ®rvi (32)
we employ an approach similar to the one proposed in [24] =0

for treating measurements that depend on previous statesPia-q/x in EqQ. (31) is the propagated covariance of the state
particular, at time-stef, when an image is registered, a copyt time-steps +d, which is computed by recursive application
of the filter state is created and added to the state vector. THeEd. (26).

error state is also duplicated, and thus the augmented errorlhe expression in Eq. (31) indicates that exploiting the

state vector at time-step is given by structure of t_he propagation equations allows _for thg co-
N variance matrix of the filter to be propagated with minimal

Kpp = Xkl @27) computation. Essentially, compared to the case where only

Xspik the current state is kept in the state vector, the only additional

computation that needs to be performed every time a new
roscope measuremeat,, ., becomes available, is the “ac-

cumulation” of the state-transition matriceB;.,;, to evaluate

a termF;,;. Since only one matrix multiplication per time-

wherex;, , denotes the static copy of the state, which do
not evolve in time. During the time intervel, k-+d], while the
image is being processed, rotational velocity measurements
mtegrated to pro.pagate the evolving state_, wh|I§ the secon ep is necessary, this can be performed very efficiently.
static copy, remains unchanged. The benefit of this formulat|0n9) State and Covariance Updatdn this section, we de-

is that when the measurement becomes ava|lab_le at_ t'me'ségﬂbe the measurement model we employ for performing EKF
k + d, both the current statand the state at the time mstantu dates. In each of the images recorded by the camera, a

of the image registration are included in the augmented filt raight-line detection algorithm is applied (cf. Appendix II)

state vgctor. Thus, the measqrement error can be express Bbtain measurements of the projections of the stair edges
a function of the augmented filter state, and the standard EkFine image. In the following we assume, without loss of

equations can be applied for updating. . generality, that all quantities are expressed with respect to a
In order to correctly update the current state, the covariangg,malized camera frame with unit focal length.

matrix of the augmented filter state must also be computed,o output of the line detection algorithm is a setidfline
We note that, since state augmentation creates two varia surements, given by

that contain the exact same information (cf. Eq. (27)), these
are initially fully correlated. Thus, the covariance matrix of Ly, =4j+mn;, j=1...M (33)
the augmented state vector at time siggmmediately after wheret,,,; is the measured liné;; is the true line on the image
the augmentation is performed, is: plane, andn; is a3 x 1 noise vector, with covariance matrix
P p R; (cf. Eq. (80)). A line is defined by its polar representation,
Pyp = { Kl k'k} (28) e
Prur Prp o .
At every time step when a rotational velocity measurement t; = [cosg; sing; —pj] (34)
is processed, the current robot state is propagated as shoviaere (¢;,p;) are the line parameters, representing the ori-
in the preceding section, while the previous, static statentation and magnitude of the line’s normal vect@®H;
remains unchanged. Thus, the error propagation equation iforFig. 5). A point p with homogeneous image coordinates

the augmented state vector is: p=[u v 17 lies on the line¢; if it satisfies the equation
Xptik = { Py Oexﬁ} Xp|k + [ 1d ] ucos¢; +vsing; —p; =0=p’L; =0 (35)

’ Osx6  Toxo 061 We now derive a geometric constraint relating the measure-

= i’kik\k + 1y (29) ments of the lines on the image plane with the robot’s attitude.

Let O denote the principal point of the image pladedenote
and the covariance matrix of the augmented state is propagatsifocal point of the camera, ang = [sing; —cos¢; 0]7

according to be a (free) unit vector along the line on the image plane. From
. — — ——
5 oo Q, 0 Fig. 5 we observe that the vectars and F'P; = FO+OP; =
Prig = ®uPyp @ + d 66 [pjcosg; p;sing; 1]T define a plane that contains the
O6x6  Ocxs J 70 P .
. observed line (i.e., it contains the vectg). The normal vector
= [‘I’kpﬁlk@qk); Qua ‘I}’v’Pklk} (30) to this plane is defined as
bl i N pj COS ¢; sin ¢; cos ¢
It is straightforward to show by induction thatdfpropagation FP; x u; = |p;sing; | x |—cos¢;| = |sing; | =£; (36)

steps take place in the time interval between image registration 1 0 —pj



and
where g, = qs ® ¢; ! represents the error quaternion at the

time instant of the image registration. Thus we can rewrite
Eqg. (38) as:

Tj = eZTCT(g S)Emj - e?CT(qu)EJ
= e/ C"(G.) (CT(§D)lm, — C" (63:)CT(F7) (bm, — 1;))

By employing the small angle approximation [19]:

Fig. 5. Spatial relationship between the observed unit vegtpthe line on C(&js)
the image plane with unit vectar;, the line measurement vectéy, and the

observation jacobiaiH,; . The focal point of the camera is denoted &5 5nq jgnoring quadratic error terms, we obtain the following
and the point on the line with minimum distanpe to the principal poiniO

asP;. expression for the residual:

~ ngg — L505 XJ 5 (41)

rj = e] CT(q:)|[CT (L), x |60, + ] CT(q:)C (Fq)n,

Since the vectog; is contained in the plane with normal vector 00k ajk
£;, we obtaine; L £;, and thus = [01x6 H,,] At;lg;d\k +Tn,
(Cei)" £, =0=e"CT(Sq.)¢; =0 (37) Ab,
= Hj)V( + I‘jl’lj (42)

whereC(§¢;) is the rotational matrix that transforms vectors
from the global frame to the camera frame at the time instaghere we have denoted
that the measurement was recorded.

The expression in Eq. (37) defines the geometric constraint ~ H,, = [el CT(q,)|CT({7)lm,x] O1x3]
that relates the vecto€;, associated with a line projection — [qu 01X3] (43)
in the image, to the global unit vectet. This expression is _ oTCT(eNCT(Cq (44)
exact for thetrue quaternion representing the rotation between J € (6:)C"(4)

the global and the camera frame, and for thee projection gq (42) defines the linearized residual error equation for one
of a line on the image. These quantities, however, are Nefe that results from the projection of a known unit vector

avaﬂablg in practice. Instead, a nmse—corrupted.measuremglr)thc multiple lines are detected in an image, the residuals
of the line equation (cf. Eq. (33)) and the estimate of thgyresponding to all lines can be stacked to form a residual

robot's orientation at the time of the image registratigg, vector, which can consequently be used for performing EKF
are known. Due to errors in the line measurement and tfjggates.

robot’s orientation estimate, when the constraint of Eq. (37) iS| our implementation, we are employing measurements of
evalqated u;ing the estimates of the corresponding quantitigs, projections of the stair edges, which are parallel to the
aresidualarises: global y-axis. Although straight lines other than stair edges
can generally also be detected in the images (cf. Fig. 12), it

TP = 2 — 2 ) . . :

J jT T]Ci is not easy to determine the corresponding global unit vector.
= € C (ggs)lm;, — 0 In order to discard any measurements that do not belong to
= e/ CT(5qs)ln, (38) lines parallel to the globaj-axis (unit vectore,), we perform

o i ) ) a gating test with every detected line, prior to using it for state
where C(¢ ;) is the estimated rotation matrix between thgyqates. In particular, for each line we compute the residual

camera and the global frame. _ r; using Eq. (38), and require that it satisfies the Mahalanobis
In order to express the residual as a function of the errqigiance test:

in the robot attitude estimate,, and in the line measure- )

ment,£,,,,, we denote the quaternion representing the rotation Ty < (45)
between the camera frame and the robot framé @sthus H, P, HT +F]-RJTJT
obtaining: ’

where~y is equal to the 99-percentile of the} distribution
C(Gds) = C(F9C(g) (39) (i.e.,v = 6.63). Fig. 6 shows an example image recorded by
the robot’s camera. The lines that pass (fail) the Mahalanobis
3An alternative way to derive the constraint in Eq. (37) is to note that thistance test are superimposed with solid (dashed) lines. Note
that the accepted lines do not necessarily belong to the stair

vanishing point along the vecter; projects on the poinp = C(gqs)ei in
the image plane. Since this point lies on the lfiein the image, Eq. (37) )
follows directly from application of Eq. (35). steps, but they are all parallel to the glohahxis.



In order to perform the EKF updates, all lines that pass t#ggorithm 1 Attitude Estimation Kalman filter

gating test are used to define thé x 1 residual vector

Propagation: Every time a rotational velocity measurement is

received:

Hx +I'n
[0rrx6 H|%x+Tn

r

= (46)
where r is the vector with elements; (Eq. (38)), H, is
a matrix with block rowsH,, (Eq. (43)), T is a block-
diagonal matrix with element®; (Eqg. (44)), andh is an error
vector with block elementsi; (Eg. (33)). Since the errors

« propagate the current state estimate using the estimated
rotational velocities at the last two time steps in Eq. (7),
and Egs. (22) and (23)

« propagate the covariance of the current filter state, using
Eqg. (26)

« if a copy of a previous state is present (i.e., if an image
is currently being processed), compute the maffix ;

in the measurements of the individual lines are independent,
the covariance matrix oh is a block diagonal matrixR,
with diagonal elementsR; (computed using Eq. (80) in cqpying the state Every time an image is recorded:
Appendix II).

Eq. (46) defines the innovation of the EKF update. The
covariance matrix of the innovation is given by

using Eq. (32)

« create a copy of the current quaternion estimate and the
current state covariance matrix

S Hf’kﬂukHT +TRI7 Update: Every time line measurements from an image become
— H,P,H’ + TRI” (47) Bvailable: _
« perform gating tests for all detected lines (Eq. (45))
and thus the Kalman gain matrix is determined as: « use the lines that pass the gating test to update the state
using Egs. (49) and (50)
K = f’k+d|kHTS*1 — {Kmd} (48) « update the covariance of the current state vector using
K, Eq. (51)

discard the static copy of the state

whereK;., 4 is the Kalman gain for the current state, ad
is the gain for the static state (i.e., for the state at the time

instant of image registration). It is important to note that the

static copy of the state doemt have to be updated, as onlyB. Estimating the distance ratidy, /dr

the current attitude is necessary for motion control. Therefore,In order to avoid collisions with the boundaries of the stairs,

evaIuann ofK, is not necessary, and is om|tte_d to reducg.le centering controller requires an estimate of the robot's
computatlons: The block element B corresponding to the distance to the walls. Given the projections of the stair edges,
current state is given by (cf. Egs. (31), (47) and (48)): it is possible to estimate the ratio of the distances from the
camerato the left and right ends of the stairs. We note that
this ratio will in general differ from the ratio of the distances

of therobot’s center from the ends of the stairs. However, for

small steering angles this difference is not significant, and we

Kitd = FirdPrpHL (HPy HI + TRTT) !

The current error-state correction is computed as

@k+d found that it does not hinder the controller’s performance.
Abria|l Kpar The 3D coordinates of two points that lie on the left and

right ends of a stair edge are given respectively by:
The update for the quaternion is given by

To To
ES o IS G G
Qetdlkrd = Okt ® Qryd)k (49) bL=|w and pr=|0 (52)
Zo Zo
where _ o
R lg@k J where the width of the stairs is denoted hy, and the
0pyq = [ 2/\; — ] coordinatesz, and z, can be arbitrary (cf. Fig. 4). The
\/1— i59k+d59k+d projective image coordinates of the projection of the left
: : o endpoint on the image are determined by:
The update for the bias estimate is simply P g y
. . — 1 _ “prL
by dajk+d = Pryar + Abgtd (50) Py = o [C(&E) “pc] { 1 }
. . . . 1 _ _ G
ler?ally, the covariance matrix for the current state is updated = [C(S¢) —C(5¢)Cpe] { Il)L:|

L cqy (G G
Piraera = Prranr — KiraSKig (51) cLC(GqS)< pr —“pc) (53)

For clarity, we present the steps of the attitude estimatiovhere the vectofpc = [z. y. 2.7 denotes the position
algorithm in Table 1. of the camera in the global coordinate frame, andis an



arbitrary nonzero scalar. From the last expression we obta

Lo — Te
w—ye | =cLCT(G4s)PLy (54)
Zo — Zc

By employing similar derivations for the right endpoint o
the stair edge, we obtain

To — Tc

—Ye = CRCT(%@S)TPRP (55)
Zo — Ze¢

for some nonzero multiplicative constant.

At this point, we note that the distance of the came
from the left side of the stairs g, = w — y., while
the distance from the right side sz = y.. Moreover, an
estimate for the right-hand side of Eqgs. (54) and (55),
to a mgltlpllcatlve constant, Ca_n be cqmputed by emE)on"]-gg. 6. An example image recorded by the camera, with the detected lines
the estimate for the camera attltudé(gtis) = C(Eq’s)C(q’s) that passed the Mahalanobis test superimposed as solid lines. The dashed lines
and the measured image coordinates of the endpoints of @ethose discarded by the gating test.
line, prp,. and pr,,.. Thus, if the multiplicative constants

in Egs. (54) and (55) were known, it would be possible to ] ) . )
directly estimate the quantitiegz = y. andd;, = w — y. CONSpicuous outliers, we do not consider lines that are shorter

from these equations. However, due to the scale uncertaiffift" lines above them in an image. This constraint arises from
introduced by the use of a single camera, only the ratio of tf2€ geometry of the projection model, which dictates that lines
multiplicative constants can be computed. By noting that th@at are closer to the robot (and thus lower in the image)

first and third elements of the vectors in the left-hand side 8fould appear 'afgér'\/'oreover, we employ a median filter to
Egs. (54) and (55) are equal, we can estimate the catio, COMPUte the median ratio estimate from all the lines detected

as in the last five image frames. Since the median is not sensitive

to the existence of a small percentage of outliers in the data,

cL (elTCT(g(i,)lf,mm)2 + (e§CT(g§s)pRM)2 the_ ratLo esrt]imgtels we ob(;ain 3rg m(r)]re robust. \:Ve note at this

P - 2 - 2 oint that the delay introduce this temporal averaging is
&\ (ef CT(Gd:)PLp,.)” + (] CT(GE:)PL,) P ’ Y b e

not significant: since images are processed at a rate of 15Hz,
and thus an estimate for the ratio of the distanégélr can any large change in the true ratio of distances (for example,

be computed as due to large slippage), will be detected on average in less than
0.2sec.
d _ w—y. _ cr|e3CT(Gd)PLp., (56)
dr Ye cr | €3 CT(GT)PRp,, IV. MOTION CONTROL

In every processed image, an estimate for the rétiodr ~ A. Overview
is computed from each of the lines that are found to be

rallel he gl -axis. r experiments have shown . . L . . .
parallel to the globaly-axis. Our experiments have sho orithm are: (i) maximize the time that the robot is heading

that these estimates can vary significantly within an imag frectly up the stairs, and (i) keep the vehicle away from the

due to the fact that the localization of the lines’ endpoints Saircase boundaries. The first goal is necessitated primarily

not very reliable. Several factors contribute to this: (i) Du% the observation that the actual stair-climbina speed is
to the properties of light reflection, the corners between th 9 sp

. . . . significantly affected by the robot heading. Specifically, even
stairs and the adjacent walls are illuminated less than the re%1
of the stairs. (i) Due to the accumulation of dirt and thvhen both track motors are commanded to rotate at the same
offects of us.e the ends of stair edges often have differera{e’ the actual linear and rotational velocities of the vehicle
appearance tr;an the center. (ii) Thg robot undergoes rag{%{)end on the angle between the track cleats and the stair
rotations about itsz-axis (which coincides with the camerat epks - When the_ cleats Zre paral_lel tolthe stalu][ edges, bﬁth
z-axis), as a result of the tracks’ interaction with the stepraC $ exert maximum and approximately equal forces on the
(cf. Fi ' 9). These rotations result in image blurring, that I%Sfeps which results in efficient stair climbing at high speed. In
- M9 9). Y irmng, that, ontrast, if the cleats engage the stair edges at a large angle,
more significant at Iarg_er a_ngles_from the optlc_al axIs. (IV§1e track-surface interaction becomes highly nonlinear and
Igr?tr(;zzntiﬁalr?jgstr?;rgzIrtif)hvégn?)t??hgé it:q:zergsultmg n IOw%rifficult to model. This is primarily due to the elasticity of the
: Periphery o ’ Vacks, the time-varying friction coefficients, and the rapid and
The above discussion indicates that it is necessary to emplo : . ,
. : . : uripredictable changes in the percentage of the tracks’ surface
a robust scheme for fusing the ratio estimates of differen
lines, to ensure that spurious measurements do not cause largg, exception applies for lines that extend up to the end of the image. In

fluctuations in the robot’s ratio estimate. In order to discarglr implementation, these lines are not discarded by this rule.

The two main objectives of the stair-climbing control al-



10

that is in contact with the stairs. This complex interaction d_ dg
causes disturbances in the motion of the vehicle (intense tra :
slip, large lateral velocities and rotational accelerations) who
magnitude increases with the robot velocity. This situation ¢
lead to uncontrollable motion and failure due to collisions
even toppling of the vehicle.

Under ideal conditions of operation, feeading controller
designed so as to minimize the heading error estimated
the EKF (Section Ill) should be sufficient for guaranteein
that the robot will travel straight up the stairs. As long a
the vehicle starts at the center of the stairs, it should
expected that it will finish close to the staircase centerlin
However, the trajectory disturbances due to the highly dyna
motion profile, often cause the robot to move towards t
boundaries of the staircase. In order to avoid collisions wi
the walls or the stair railing, it is necessary to be abl
to detect when the vehicle approaches the stair sides and
provide appropriate correction. To this end, we have designiggl 7- Diagram of vehicle on the stairs. CG is the center of gravity, O is the

. . . . . center of rotationg is the heading direction, and,, dg are the distances
a centeringcontroller, which, given the ratio of the distanceg, e jeft and right of the stairs, respectively. Note in this plot that the dark-
to the stair boundaries (Section IlI-B), changes the referengey regions correspond to the “non-safe” areas close to staircase boundaries,
signal (heading direction) of the heading controller and brinqﬁile the white and light-gray regions are considered as “safe” areas. When
fe

Y

. . ; . e vehicle steers away from the stair ends, at a commanded @&neted ;,
the Veh'CI? closer to the C_ent'er“ne- This two-tiered app'roa eeds to pass through the light-grey area and move within the white region
to the design of the stair-climbing controller system (cf. Fig. Zefore the heading controller switches its reference signaback to the
is described in detail in the following two sections. nominal heading direction of 0 degrees.
At this point, we should note that the centering controller

computes a heading directiaf)., every time it receives an

estimate of the distance ratié; /dr. These estimates becomeg 3 non-symmetric function of the robot location relative to
available asynchronously from the image processing algorithik staircase centerline, the centering controller uses instead
at a ratef, ~15Hz. The heading controller receives as iNpYs input the normalized ratié = min(dy, /dg, dr/dL), 0 <

(i) the heading reference directiéh dictated by the centering 5 < 1. Additionally, the sign values; = sign(d;, /dg — 1)
controller, (ii) the yaw,¢, and pitch,&, estimates from the is computed to determine the direction of the deviation from
EKF, and (iii) the desired linear velocity of the vehicl€, zero heading. The output of the centering controller is the
specified by the user. The output of the heading controller isference signal, provided to the heading controller (Fig. 2).

the commanded rotational velocity,, of the robot. Although The centering controller is implemented as a step function with
estimates of the vehicle's heading are provided from the Eifysteresis:

at a rate of f.=100Hz, the heading controller operates at
fn =30Hz. This rate has been determined experimentally to /0 0> b,
be fast enough to react to the dynamics of the vehicle while T sscbg, <0

placing reasonable computational demands on the system. The

input and output signals for both controllers are depicted W{1€reds = 10° is the magnitude of the direction change, and

Fig. 2. oo = £ (6. = %) is the normalized distance ratio threshold

for detecting when the robot leaves (enters) the safe region
. around the stair centerline. Note that the threskpldeceives
B. Centering Controller different values (hysteresis when switching between regions)
As previously mentioned, the optimal heading direction falepending on the direction the normalized ratiapproaches
a stair-climbing vehicle ig),, = 0. However, when the robot these from. This is necessary so as to avoid oscillations of
approaches the staircase boundaries, the threat of collising reference signa, on the region boundary. The values
requires the centering controller to deviate from the optimaf 9, and 5, have been determined experimentally in order
heading direction and steer the robot away from the stag minimize the disturbances on the vehicle motion and the
sides. The information available to the centering controller fgirobability of collision with the stair boundaries.
predicting whether the robot is outside a “safe zone” around
the centerline, is the ratio of the distancés/dr to the left
and right boundaries of the staircase (Fig. 7). Since the rafio Heading Controller

5These observations are corroborated by numerous trials of human operato_an qrder .to ensure that the VE:hICle will follow the headmg
attempting to remotely control the vehicle up the stairs. The most commalirection dictated by the centering controller, a model-based

modes of failure are: (i) collision with the staircase boundaries, (ii) toPp””ﬁeading controller has been designed. In what follows. we
of the vehicle. The main reasons for these events were high lateral velocit ’

ies . .
and/or sudden changes of the motion direction that caused the vehicle to aﬁ%?ﬁcr'be the system model employed for this purpose and the
parallel to the stair edges. derived state-feedback controller.

(87)
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Tais Substituting from Eq. (61) in Eq. (60), it is:
—m ~m i m

w: w; w; m my T b
(| Mot e () [otor |4 To= (T =11 3, (©2

= ¢ Controller T T

The commanded motor torqug™, j € {R, L} is the output

of the motor controller (cf. Fig. 8) which is modelled as a
Fig. 8. Motor controller and motor block diagram. PD controller with characteristic functia,,.(s) = k, + kqs,
and input the difference]" between the desired]" and the
actualw?" rotational velocity of the motor. Since the response

1) System ModelA dynamics-based model of the vehicIeOf the motor controller is extremely fast compared to the
ghicle dynamics, the relationship betwe€f and &} can

is developed in order to design a heading controller for ug% . 1 as:

during stair climbing. A detailed description of modeling’® @PProximated as:

techniques for tracked vehicles is presented in [25] and [26]. m _ ). =m _p  (om _ m c IR L 63

In this work, we have approximated the dynamics of the 7 me & me (@' —wj")  JERLY (83)
robot climbing stairs as a second-order linear system. Thigplying the final value theorem th,,.(s), it can be shown
approximation does not invalidate the model; it limits thougthatk,,. = k,, which is known from the motor specifications.

the range of application of the designed heading controller §bstituting from Eq. (63) to Eq. (62), it is:
small angles|@| < 30°) of robot heading direction. The main

advantage of this linearized model is that it allows for the use T = Kmengb @m —om) (64)
of formal control-system design techniques when designing 2rs
the heading controller [27]. _ _The motor rotational velocity™™ is given by:
As shown in Fig. 7, the center of gravity (CG) of the vehicle
used in our implementation is above its center of rotatibn o=yt je (R L}
The equation that describes the rotation of the vehicle in a / Trg 7

plane defined by the stair edges is whereV; is the linear velocity of the corresponding track, and

Lo =To + mgdeg sinasin @ — M, (58) Mg andr, are defined as before. Employing this last expression
. and the kinematic relationship between the linear velocities of

wherew = 6 is the rotational acceleratio, is the heading the two tracks and the rotational velocity of the robot, i.e.,
direction, andl,, is the torque exerted by the motors about the
vehicle’s center of rotation)). The parameters in the above w=Vr—-VL)/b,
equation are: (i)I, is the moment of inertia about the z- . n B B
axis, computed by weighing the individual subcomponents BfiS readily shown thatz —wi* = Tw, O —op = 220,
the vehicle and measuring their location relativeco (i) 2nd thus
m is the mass of the robot, (iiiy is the magnitude of the “m _ mm Mg o (65)
gravitational acceleration, (iWcq is the distance of the CG Ts

from O, (v) a is the inclination of the stairs, and (v)/, is where®w = @ — w is defined as the difference between the

the rotational resistance. This last parameter is Compmedc%%manded* — 4. and the actualy = @, rotational velocit
M, = pumgcosaL/8, where L is the length of the tracks, w7 o y

and . is the coefficient of lateral resistance, estimated fromc the vehicle body. Substituting from Egs. (64) and (65) in

experimental data as in [28]. For small values of the headinr@gq' (59), we have:

direction inf ~ 6), Eq. (58) can be approximated by the kme (ngh

2
following equation: 1.0 = 9 (T> (6 —0) + mgdegsina 0 — M,

L0 = To+mgdegsina §— M, (59) Rearranging the terms in this last equation and making the

In this last expression, the torqu&y, on the robot body is following substitutions
computed as: o Fome (b 2 L mgdeg sina
To = (Fr — F)b/2 o) 2L \rs ) 7 1.

where b is the distance between the tracks afg (F.) is Wwe have:
the force exerted by the right (left) track of the vehicle on .. .
the steps. These forces are related to the corresponalinor 0= —ky 0+Fkg0+Fkywa

m m 1 1 .
torquesT}" and Ty by the following expressions: This model can be written in standard state-space form as:

_ ng m _ ng m .
Fr = TSTR ) Fr = TSTL (61) 0 0 1 0 0
. . . il T Nk =k || 6T R |7
wherer; is the radius of the sprocket that drives each track ) 9 v v
andn, is the gear ratio between the motor and the sprocket. ~ %(t) = A x(t) +b u(t) (66)
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2) Controller Design: Once the state-space model (cftracks to facilitate climbing the first step of the stairs. After the
Eq. (66)) is developed, a number of techniques can b@tial alignment to the stairs (described in detail later in this
employed to design the controller. In this work, we havsection) is complete, the robot positions its arms at an angle of
selected a pole placement approach which has the advanté@fefrom the ground, and starts approaching the stairs. Once
of being able to explicitly specify the resulting dynamics of théhe robot starts ascending, the arms are extended forward, to
controlled system within the constraints of the actuators [2#haximize traction. The two different positions of the robot's
The result of this design is a control law expressed as:  arms can be seen in Figs. 1 and 2.

T The proprioceptive measurements in our implementation are
u(t) = —kx(1) provided by an Inertial Science ISIS IMU, operating at 100Hz.
wherek is the vector of the controller gains. A Pointgrey Firefly camera is used, recording grayscale images

A few modifications to Eq. (66) are required before applyingt @ rate of 15Hz, with a resolution of 64@80 pixels. The
the pole placement design method. The first of these is #gorithms have been implemented in C++, and run in real time
discretize it at a rate equal to that of the controller. AQN @ Pentium-3 onboard computer (800 MHz CPU, 256MB
mentioned before, a heading control rate f=30Hz was RAM) operating under Linux. The most computationally ex-
determined sufficient for reacting to the vehicle dynamics. TiRensive procedure of the algorithm is the detection of the

discrete-time form of Eq. (66) is: lines in the images, which requires approximately 60msec of
processing time per image. The time necessary for propagating
x(k+1) = Aq x(k) +bg u(k) (67) the state and the covariance is approximately 0.2msec, while

where A; and by are the equivalent discrete-time state an.t(!i]e time needed for covariance update is appr.oxmately smsec
and input matrices. In the worst case (the actua_l update processing time depends
The second modification is the augmentation of the statf the number of detected lines). .
) ) : . o Both sensors (gyroscope and camera) have been calibrated.
vector with a heading-error integral terin, and the addition L Lo L
of a reference signa, (k), i.e Intrinsic camera calibration has been performed by application
rA of Zhang’s method [29], to estimate the linear parameters of

Zr(k+1) B 1 h?” Zr(k) 1 0.k the perspective model and the nonlinear distortion parameters.

[ x(k+1) } - [ 0 Ay ] [ x(k) } + [ 0 } r(k) Using the resulting calibration, the pixel coordinates of image
0 points can be transformed to the normalized image plane by

+[ by }U(k) employing the inverse model of Heikkila et al. [30]. The

g o . o rotation between the camera and robot frames is known from
= X(k+1) = Aax(k)+Cq 0p(k) +baulk) (68) e engineering drawings of the robot. The gyroscope cali-

with h” = [—1 0]. This extra state terr; is required so as to Pration consists of determining the continuous-time standard

eliminate any steady-state error that may occur in the systé@viation of the noise processas andn,,, which have been

due to disturbances caused by the unmodeled dynamicsegtimated asr,, = 6.3 x 10~°(rad/sec)/Hz, and o, =

the interaction between the vehicle tracks and the stair steps< 10~ °(rad/se€)/v/Hz. .

The reference signdl, (k) is included in this last equation in At the beginning of every run up the stairs, the state vector

order to allow for the centering controller to modify the systerﬂnd its covariance must be initialized. An initial estimate

behavior by changing the heading direction of the vehicfér the gyroscopes’ biases and their variance is produced by

when the robot moves close to, or away from, the staircag@mputing the sample mean and sample variance of gyroscope
boundaries. measurements, recorded while the robot remains static for

The design of the heading feedback control lak) = SS€c. In order to initialize the attitude, we consider the ground

—ky x(k), affects several aspects of the system. The firdt the bottom of the stairs approximately horizotaind
obvious effect is on the dynamics of the resulting system fRus the only remaining unknown variable is the robot's
terms of stability, response speed, and damping. A secondf@{ation about the:-axis (yaw). This is estimated using the
consideration, contradictory to the first, is the minimizatio@lgorithm presented in [13], from the projections of lines in
of the energy expended during stair climbing. A balance Hpe image. If the robot is not initially aligned with the global
these two is achieved by selecting a damped system on geordinate frame, it rotates until the angle between the robot
order of¢ = 0.7 without affecting the natural frequency of the2nd global frames is smaller than a threshold (equal’ti5
system significantly [27]. The effect of the controller desigRUr implementation). _ _

on the response of the system has also been iterated both ihe robot’s attitude is initialized using the estimate for the

simulation and experimentally in order to refine the design./oPot's yaw after the initial alignment, and assuming zero
rotation about the global- andy-axes. The standard deviation

of the initial attitude errors is set t0.66° for the roll and

_ _ pitch errors, an@° for the yaw error. These values correspond

A. Implementation details to +30 error intervals of(—2°,2°) for the roll and pitch

The estimation and control algorithms described in the prerrors, and(—6°,6°) for the yaw (cf. Fig 11). The relatively

ceding sections have been implemented on an iRobot Packbgt _ _ _
. . . . . ... CAlternatively, the roll and pitch angles can be determined from the values

tracked vehicle. The robot, shown in Fig. 1, is equped With the accelerometers of the IMU, or from an inclinometer, in case the robot

two retractable small arms, that are used as extensions of ithén uneven terrain.

V. EXPERIMENTAL RESULTS
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Fig. 9. The time evolution of the estimates for (i) the robot’s attitude anglrﬁg

(top three plots) and (i) the ratio of distancés /dz; (bottom plot). .11. The time evolution of the standard deviations for the angular errors.

B. Results
0.06

/ A large number of tests has been carried out to examine
X the performance of the proposed stair-climbing scheme, and
oor |1 we hereafter present representative results from one of the
experimental runs. In Fig. 9, the estimated Euler X-Y-Z
{1 angles (roll-pitch-yaw) representing the robot’s attitude, and
the estimated distance rati@;,/dr are plotted. Note that
the Euler angles are not directly estimated by the filter, in
which a quaternion representation of rotation is used. They
are presented in the figure to facilitate visualization, since
) ~ "7 plotting the time evolution of the quaternion elements does
.‘ not provide an intuitive understanding of the robot’s attitude.

0.02

Residual (m)

-0.02

The robot's yaw angle is also compared with the reference

angled, determined by the centering controller.

y In this run, the robot completed climbing the first step
008 50 10 50 200 =0 at approximatelyt = 2.7sec, and shortly after, the first

Update number reliable distance ratio became available. The robot correctly

Fig. 10. The residuals of all lines that passed the Mahalanobis test, compaq&]termmed that it was posmoned too close to the left wall,

to the £30 of their distribution. and the centering controller commanded the robot to head at

an angle of10° to the right (cf. Fig. 9). At approximately

t = 7sec the robot entered the center zone, and therefore the

reference angle of the heading controller becaine= 0°.

large initial standard deviation for the yaw is chosen so as ‘It—|oowever, due to slippage, the robot again moved to the left

allow for correcting potentially large errors in the initialization non-safe zoniz after Zsep (cf. Fig. 7), 'and the reference angle
which may result if the robot is too close to the stairs (and thl%as S,Et Fo_lo once again. At approximately= 11sec, the
visibility is limited), or if spurious lines exist in the image. robot's d'St‘f"”C‘* ratio crossed the thres_h&_bgck 4/7, and the

' robot remained in the center zone until it reached the top of

As soon as the robot reaches the top of the stairs, it Hae stairs, at approximately= 13sec.

to immediately detect this, stop, and switch to a different In Fig. 10, we plot the residuals of the line measurements,
“behavior” (possibly searching for the next flight of stair€computed by Eq. (38), for all the lines that passed the gating
to climb [13]). Failure to do so may result in collisions andest (Eq. (45)) during the run. These residuals are compared
equipment damage. Since the latency of the EKF attitude est-the £30 bounds corresponding to the diagonal elements of
mates is very low (approximately 0.2msec), we have decid8d(Eg. (47)). We observe that no noticeable bias is present,
to employ these in order to detect the robot reaching thehich indicates that the estimator is consistent, and that the
top of the stairs. In particular, when the robot’s pitch in 1@mployed sensor noise models are sufficiently accurate. The
consecutive time-steps (corresponding to a time interval plots in Fig. 11 show the standard deviation of the angular
0.1sec) is smaller thar*5n absolute value, the robot stops. errors. The plotted lines represent the square roots of the

-0.04




(d) ®

Fig. 12. (a) Location: Tampa Police and Fire Training Academy tower, Tampa, FL, material: metal, 36patlumination: daylight (b) Location:
CS&E Department 5th floor, University of Minnesota, material: plastic/carpet, skg¥e:illumination: poor indoor lighting (c) Location: CS&E Department
study commons, University of Minnesota, material: metal, sl@®€; illumination: indoor lighting (d) Location: Columbia Heights Central Middle School,
Minneapolis, MN, material: linoleum, slop&0°, illumination: heavily back-lit (window on top of stairs) (e) Location: Walter Library lobby, University of
Minnesota, material: marble, slop25°, illumination: indoor lighting (e) Location: Digital Technology Center, University of Minnesota, material: carpet,
slope:33°, illumination: indoor ambient daylight.

diagonal elements of the state covariance matrix correspondingthe yaw estimates provided by the EKF become smaller
to the attitude. From this figure, it becomes clear that thkan 1° after only a few seconds (cf. Fig. 11). Thus, the
pitch is unobservable, as the variance of the errors around #stimation errors are significantly smaller than the errors in the
robot’s y axis monotonically increases. Contrary to that, theehicle’s commanded heading direction. This is actually the
variance of the errors in the roll and yaw remains boundeghain reason for selecting sensor- instead of dynamic modeling
indicating that these degrees of freedom of the attitude amben designing the estimator for this task. Similar cases have
observable. These results corroborate the theoretical analys&viously appeared in the literature (e.g., [15]) where even in
of observability, presented in Appendix IlI. the case of an orbiting satellite whose external disturbances
Although we are not able to obtain ground truth attitudare minimal, efforts to incorporate the vehicle dynamics in
information for the entire duration of this experiment, wéhe design of the state estimator have not resulted in increased
observe that the robot's pitch and roll angles at the top 8gcuracy. On the contrary, the non-linear dynamics often have
the stairs are equal t0.4° and 0.1°, respectively. In all our a negative impact on the performance of the estimator, as these
experimental runs, we have observed that the roll and pitttiroduce high-frequency components and biases that increase
at the top of the stairs is consistently smaller thin in the errors in the state estimates [17].
absolute value. Comparing these results with the estimated
standard deviations of the angular errors (equal.tg° for We note at this point that the results presented in this
roll and 1.4° for pitch in this run), and taking into account thesection, that pertain to a single run of the robot up the stairs,
inaccuracies in the construction of the stairs, indicates that & typical of the algorithm’s performance. Averaging over
covariance estimates accurately describe the uncertainty in #fieour recorded runs, the rms value of the deviation of the
robot’s attitude, and thus are consistent. robot’s heading from the commanded direction was equal to
As shown in Fig. 9, the heading controller is able to redude54°, while the average value of the normalized distance ratio,
the error between the actual vehicle direction and that dictatée= min(dy /dr,dr/dr), was equal to 0.62. These values are
by the centering controller to within rough$iy. The variations computed using the estimates for the robot’s attitude and for
from the nominal heading direction are due to disturbanc#ee ratio of distanced; /dg, as no ground truth is available.
in the system, caused by the dynamics of the interactidinis performance has been determined, through extensive
between the vehicle tracks and the stair steps, which are verperimental validation, to be sufficient for the purposes of
difficult, if not impossible, to model. In contrast, the errorautonomous stair climbing.
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C. Reliability we have designed a state-feedback heading controller, based

One of the primary concerns during the development 8f the dynamics of the vehicle, that computes the required
the stair-climbing algorithm is the algorithm's robustness fptational velocities of the robot in order to steer the vehicle
variations in environmental factors (e.g., illumination condill the heading direction dictated by the centering controller.
tions, slope and appearance of stairs, slippage characterishi@gtrary to previous approaches, our algorithm offers a tight
due to the surface material of the stairs, to name a few). Wiegration of inertial and visual information, and can be
have conducted over 300 tests on different types of staif@Plied on different robot models and stair types. _
for example stairs covered by marble, metal, linoleum, andAt_ this point we should note that. the algorlthm_descrlbed
carpet, both indoors and outdoors, during different times Bt thiS paper, relies on the assumption that all stair edges are
the day, and with slopes varying from 28 3%. It is worth parallel, straight 'I|nes. Extending the algprlthm tq work in
noting that the algorithm has been successfully demonstrafB@re general stairways, such as spiral staircases, is a possible
at the NSF Industry/University Cooperative Research Cenfdfection of future research. Furthermore, we are currently
(/U CRC) on Safety, Security, and Rescue Research (SSR/estigating means to improve the robustness of estimating
RC) Spring 2005 Symposium in Tampa, FL, as well as the ratio of the distances to the left and right stair boundaries.
several community and industry outreach activities of tHg the near future, we are planning to complement our existing
Digital Technology Center of the University of Minnesota@/gorithm with procedure; for autonomous stair descent and
Example images from some of the tests we have perform@giomated search for stairs.
are shown in Fig. 12. We note that camera gain calibration is
performed adaptively based on the image intensity only in the ACKNOWLEDGMENTS

part of the image where lines are detected. This often results hi K d by th ) itV of Mi
in saturation in other parts of the image, especially when the INIS Work was supported by the University of Minnesota

stairs are less well-lit than the background. This approa TC), the Jet Propulsion Laboratory (Grant No. 1251073,

however, facilitates edge detection by increasing contrast 460245, 1263201), and the National Science Foundation

the areas of interest. (ITR-0324864, MRI-0420836). The authprs yvould Ilke'to
In our tests, we have consistently observed that orientatig]‘?nk Joel Hesch, Le Vong Lo, F_afaz Mirzaei, Kyle Sm't.h’

estimation is very accurate and robust. We attribute this &d Thor Andreas Tangen for their invaluable support during

the high accuracy of the gyroscopes, and the effective Outlréqlrdware/software development and experimental testing and
g 4 9y b validation. The authors would further like to thank the anony-

rejection (cf. Eq. (45)). The algorithm was able to correctl}/n ; ho helped i h litv of thi
estimate the robot's heading &l the tests we performed. The ous reviewers, who helped improve the quality of this paper

only mode of failure that we have observed in our experimentgrough their insightiul comments.

is erroneous estimation of the ratio of distances to the left and

right boundaries of the stairs. This only occurred in badly-lit APPENDIXI
indoor environments, when the surface of the stairs is covered DISCRETETIME MODEL
by dark-colored material. In these cases, the endp0|nt§ OtI'he discrete-time state transition matril; is a block
the stairs cannot always be reliably detected, thus sometimes

resulting in the robot coming in contact with the wall Ormatnx with the following structure:

railing. This type of failure occurred in less than 10% of the (©) U
cases where the robot attempted to climb dark and badly-lit Oy = 0353 Isxs (69)
stairs, and we believe that by placing a small light source on .
the robot, this problem can be eliminated. The matrices® and ¥ can be computed as
1
O =1I3,3 — — sin (|Jw|A?) |&
VI. CONCLUSIONS M AT sin (|0]A¢) |& ]
In this paper, we have presented an algorithm for au- +ﬁ(1—COS(|GJ\N))L@’ x |2 (70)

tonomous stair climbing with a tracked vehicle. Through

extensive experlmentgtlon, we have verified that this task.can U = I35, 3At + i(1 — cos(|<.2:|At)) |@ x|

be accurately and reliably performed by a robot that receives |w|?

and processes data from only two sensors: (i) the rotational B L(W\At B sin(|<2:|At)) & %2 (71)
velocity measurements provided by a 3-axial gyroscope, and |w]3

ii) the line parameters estimated from the stair-edges’ projec- o . .
Eigns on a Eamera image. Specifically, we have 3esigrrj1etjj I}pen |w|_|s ST“""”* t_)(.)th of the f'above EXpressions will I_ead
EKF estimator that fuses these measurements and comr\)lﬁeélumef'cal |nstab|llt)_/. By taking the limit and applying
precise attitude estimates at a high rate. Additionally, Hopital's rule, we arrive at

have described the process we employ for estimating the ) A2,

robot’s relative distance to the stair ends, from the stair-edge |‘}JI|IE>0® = Isxs — At|@ x| + ——[@ x] (72)
measurements. This information is utilized by a centering A2 AP

controller that modifies the vehicle’s heading direction every lim ¥ = —I33At+ — @ x| — — | ><J2 (73)
time the robot approaches the staircase boundaries. Finally, |«1—0 2 6
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The discrete-time noise covariance mat€)g has the fol- B. Straight-line detection

lowing structure The output of the edge detection process is a set of edge

segments. Given the normalized coordinates: (u;,v;), ¢ =
Q= {QITI QIQ] (74) 1...N of the points in thej-th edge segment, total least-
12 Qo squares line-fitting is performed to obtain an estimate of the
best straight-line fit. Lines are parameterized using the polar

and the elements follow after considerable algebra as ) .
representation (cf. Eq. (34)), and the line parametersp; )

) ) A3 are determined by minimizing the weighted sum of squared
Qi =0, At - Izxs + 0y, <I3><33 distances of all the points; to the line (cf. Eq. (35)):
ULIADY 4 ogin(|w|AL) —20w|At . (¢, p;) = argmin J (¢, p)
oF o x| b.p
N
(75) =ar minzi(wcosngrv‘singbf )2 (78)
A2 |@|AE — sin(|&]At) Ty L ' g
Qu2=—0 - [Isxs—— — A @ x| =
2 j@w?

whereo is the standard deviation of the errors in the image

W +cos(|lw|At) =1 coordinates of the detected edge points.
+ FE @ x] ) (76) " Eor each line, the covariance matrix of the line parameters
Qa2 = 0, At - I3ys (77) s computed, and denoted as
- N | 02, con(oy.p)
As in the case of the state transition matrix, we can derive the P, = corr( . p ) 2 (79)
form for small|w| by taking the limit and applying L'épital’s I P
rule whereaﬁj is the variance of the line’s orientation, is the
variance of the line’s distance from the origin of the image
. , , AP AS coordinate frame, andorr(¢;, p;) is the correlation between
|(21)1\H—1»0 Qi1 = 07 At - Igxs + 20, (st3? ST & x] ) the line orientation and distance.

. A2 AP A In_ ord(_er to discard all segments that do not corrg_spond to
lim Qi2 = —0oy, - (Isw—, TR @ %]+ T |@ sz) straight lines, we perform g2 compatibility test. Specifically,
w]=0 2 ' : the weighted sum of the squared distances of all pojnts

For a detailed derivation of the above expressions, th the line ejé J(¢;,p;), is a random variable, distributed
interested reader is referred to [20]. according toxz,_,. In o_rder t_o filter out_edge segments_ that do

not correspond to straight lines, we discard edges with values

for J(¢;, p;) exceeding a threshold equal to the 99-percentile
of the x%_, distribution.

Once all the straight lines in the image have been detected,
we examine whether some of the detected lines correspond to

The images recorded by the robot's onboard camera élp@ same physical Iir_1e. For th?s purpose, all lines are gxamined
processed to detect the projections of the stair edges. Th&airs, and if the difference in the lines’ parameters is small,
detected lines are employed (i) for updating the robot's attitud@f@! least-squares line-fitting is performed using the points
estimate, and (i) for estimating the ratio of the robot¢hat belon_g to both_lln_es. If the resultmg_ line satisfies the
distances to the left and right boundaries of the stairs. In tRfPrementioned¢® criterion, then the two lines are merged.
following, we outline the steps of the straight-line detectiohniS Process is applied recursively, until no more lines can be

algorithm. merged. - -
In the EKF update of the robot’s attitude, the covariance

matrix of the line equation vecto,;, is necessary (cf. Sec-
tion 111-A.9). This is computed as:

APPENDIXII
LINE EXTRACTION

A. Edge detection

T
The first step in the processing of each image involvesR; = (V[¢j pj]TEj) Py, (V[éj pj]Tej)

application of Canny’s edge detection operator [31]. In order —sing; 0 - R

to achieve invariance of the edge detection procedure to illu- = | cos ¢, 0 | Py, B Slél 2 COE% 1 (80)
mination changes, as well as to the effects of blurring, that is 0 -1

caused by the robot’s rapid orientation changes, the thresholds

in the Canny algorithm are selected adaptively. In particular, APPENDIX I

the standard deviations, of the image gradient along the

vertical image direction is computed, and the cutoff-values
in Canny’s hysteresis-based edge thresholding are selected ds order to analyze the stochastic observability of the
(cg,06/4). proposed attitude filter, we will examine a slightly simplified

OBSERVABILITY ANALYSIS
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system that neglects the gyroscope Bigmilarly to Eq. (46) Pre- and post-multiplication of Eq. (89) wnﬁJT(G q) and
in Section 11I-A.9, we can then write the residual for all ImeC(G q) respectively, changes the inner expression to
measurements as
r=Hx +n (81) Z C(f, @)y (t,.) cov(m) ™ (t,)Hy(4,)C(¢"a) (91)
p=rv—N-+1

In this case, howeveg’ = §6, so thatH, is a matrix with ) )
Due to the particular block-structure &1, andcov(n), this

rows
H, =eTCT(q)|CT($q)e,x | (82) can be decomposed as
The noise termy = I'n is Gaussian with zero mean and Z ZCO" 1c (¢, q)H () H,, (t#)C(é”q)
covariance pmr N1 =1

_ T
cov(n) = I'RI (83)  \which is a sum of outer product matrices, sinfcel] =
As before ' andR are block-diagonal matrices, with diagonalC (7, @)H7, is of dimension3 x 1. The rank of the observ-

elements ablllty matrix is therefore equal to the number of linearly
T, = eZ-TCT(q)CT(gq) (84) independent vecto@HT Algebraic transformation oﬁ"HT
shows that this vector is the cross product of the line ve@tor
andR; as in Eqg. (80). and the unit vectoe;, both expressed in global coordinates:

From the block-diagonal structure dfandR, we see that GoxT T T T T T
cov(n) is a diagonal matrix with positive, scalar diagonal H;, =C'(g(e/C(@[C (a)€;x])
elements = (eI [CT@CT (Cae;x])"

cov(n)j; = T;R;T] (85) = — |9;x %,

Recalling the definition oR; from Eq. (80), we see that it is =Ce; x 94

of rank 2, assuming tha, is of full rank. Moreover,

C¢j
Null(R;) =7 [s¢;| , 7€R (86)
0

This implies that aI[HT are orthogonal t@; and are thus
confined to one plane (| e., do not span the 3D space). We
can therefore conclude that if we observe only edges parallel
to one unit vector (as is the case for stair edges parallel to
the globaly-axis), the observability matrix will be at most
In order forcov(n);; to be zerol'T = C(£q)C(7)“e; = “e; of rank 2. Note that this does not changmardless of the
must lie in this nullspace. Assuming that this is the case, wabot’s trajectory The rotation about the observed unit vector
proceed by applying the measurement constraint, Eq. (37) e;, in our case the pitch angle, will remain unobservable, as

corroborated by Fig. 11.
c.T c®; However, in the general case where at least two linearly
eiti=0 = ey s¢; 0] |s¢;| =0 (87) independent unit vectors;, i = 1,2 are observed three times,

. P the attitude becomes fully observable. This is equivalent to
=7=0 = %e=0 (88) the matrixH! = [HT HI HT] having full rank, where
T _ .
Obviously, Ce; — 0 is impossible, since by definition Ha; = Vi x g, i = 1lor2 j =123 andv, and

{; are expressed with respect to the same coordinate frame.
ependlng on the vectors; and the observed line&;, there
can arise several singular cases, of which the following is of
partlcular interest:
o v; = v: If we only observe one unit vector, the matrix
will be at best of rank 2. As discussed previously, this is
the case when the robot observes only stair edges, i.e.,

lle;|| = 1, which completes the proof by contradiction. W
can therefore conclude, that all diagonal element®BRIT”
are different from zero, so thabv(n) is always invertible.

Stochastic observability requires that there exist positive
constantsa, 8 with a < 8 < oo and a positive intege®V’
such that, for alv > N,

alzys < Ve=¢€2. . . .
¥ e £; = £: This condition requires that all unit vectors
Z ‘ﬁqT(tu,ty)HqT(tu) cov(m) Tt ) Hy (t,) Byt L) project aleng .the same Im_e on t_he image (i.e., only one
p=r—N+1 line direction is observed in the image data).
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