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Abstract— In this paper, we present an algorithm for au-
tonomous stair climbing with a tracked vehicle. The proposed
method achieves robust performance under real-world condi-
tions, without assuming prior knowledge of the stair geometry,
the dynamics of the vehicle’s interaction with the stair surface,
or lighting conditions. Our approach relies on fast and accurate
estimation of the robot’s heading and its position relative to
the stair boundaries. An extended Kalman filter is used for
quaternion-based attitude estimation, fusing rotational velocity
measurements from a 3-axial gyroscope, and measurements of
the stair edges acquired with an onboard camera. A two-
tiered controller, comprised of a centering- and a heading-
control module, utilizes the estimates to guide the robot fast,
safely, and accurately upstairs. Both the theoretical analysis
and implementation of the algorithm are presented in detail,
and extensive experimental results demonstrating the algorithm’s
performance are described.

Index Terms— Stair Climbing, Autonomous Robots, Inertial
Sensing, Attitude Estimation, Computer Vision.

I. I NTRODUCTION

STAIRWAYS and steps are omnipresent in man-made
environments. Designed to easily bridge large vertical

distances for humans, stairs represent a serious challenge to
vehicles and robots. In order for robots to operate efficiently
in urban environments, this challenge needs to be addressed.
Robotic stair climbing can be applied in numerous scenarios,
for example, in urban search and rescue missions, in military
operations, to increase mobility of handicapped people, or
to improve the efficiency of household helping robots. For
these reasons,autonomousrobotic stair climbing has been the
subject of ongoing research in the last years.

In many current applications, mobile robots are still tele-
operated, with only limited autonomy. Climbing stairs, as for
example required in search and rescue missions in urban areas,
is very demanding on a human operator [1]. Usually the robot
maneuvers outside the field of view of the operators, forcing
them to rely only on feedback from the robot’s camera. The
latter is usually mounted very close to the ground, has a
narrow field of view, and the returned images are often blurred
due to the robot’s highly dynamic motion. This greatly im-
pairs the operator’s perception of the vehicle’s current spatial
orientation. Combined with the latency in data transmission
and the robot’s high slippage on the stair edges, this can
result in inaccurate and slow stair climbing, collisions with
the stair walls, and even in toppling of the vehicle. It is
therefore desirable to endow a robot withautonomous stair-
climbing capabilities, thus enabling faster, safer, and more
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Fig. 1. Robot climbing stairs autonomously. Picture taken at the Digital
Technology Center, University of Minnesota.

precise operation while at the same time reducing the user
load.

The controller employed for autonomous stair climbing re-
quires frequent and precise estimates of the vehicle’s position
and heading relative to the staircase, in order to safely guide
it up the stairs. The motion profile (high slippage, shocks)
and the complex interactions of the robot tracks with the
stair render exact modeling of the vehicle-ground dynamics
intractable. Besides, an overly detailed model would prohibit
the algorithm from being flexible and robust over a wide range
of parameter values, such as stair dimensions and surface
material. At the same time, the number of required sensors
on the robot should be kept as low as possible in order to
minimize cost, weight, and power consumption. In order to
maximize speed and reduce the risk of collision or toppling,
it is necessary to maintain the robot heading approximately
perpendicular to the stair edges. This can be accomplished
by a heading controller based solely on vehicle dynamics, if
combined with an accurate, high-bandwidth attitude estimator.

In this paper, we outline an algorithm that allows robust,
safe, fast, and accurate traversal of stairs of various dimen-
sions, using a 3-axial gyroscope and a single camera as the
only sensors. An extended Kalman filter (EKF) integrates
the angular velocities measured by the gyroscopes to form
an orientation estimate. This estimate is then updated using
measurements of the projections of stair edges, extracted from
the camera images. Furthermore, the stair edge observations
allow estimating the robot’s offset relative to the center of
the staircase. These values are used by a two-tiered controller
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Fig. 2. The block diagram of the stair-climbing algorithm.

(cf. Fig 2) to guide the vehicle upstairs. This algorithm
is very versatile and can be applied, for example, on an
iRobot PackBot [2], as the one used in our experiments (cf.
Section V), on a Remotec Andros remote vehicle [3], or on
any tracked robot equipped with gyroscopes and a camera.

The remainder of this paper is structured as follows. After
an overview of related work in Section II, we present our
algorithms for estimating both the robot’s attitude as well as
its deviation from the center of the stairs in Section III. Our
proposed control algorithm is outlined in Section IV. We have
successfully implemented and tested these algorithms on a
tracked robot, for which we present experimental results in
Section V.

II. RELATED WORK

Stair climbing has been carried out with robots using
different types of locomotion. One can roughly distinguish
wheeled, legged, and tracked robots.

A. Wheeled Robots

Wheeled robots usually have to resort to mechanic exten-
sions to overcome stairs. One application of such a technique
is in patient rehabilitation, where stair climbing could greatly
enhance mobility, and thus quality of life, of people con-
fined to wheelchairs. Lawn and Ishimatsu [4] present a stair-
climbing wheelchair using two (forward and rear) articulated
wheel clusters attached to movable appendages. The robot is
equipped with step-contact sensors, but relies on user steering
and is thus onlysemi-autonomous.

B. Legged Robots

In [5], Figliolini and Ceccarelli present the architecture
of the bipedal robot EP-WAR2, that uses electropneumatic
actuators and suction cups for locomotion. In order to climb
stairs, the robot relies on anopen-loop control algorithm
implemented as a finite-state machine. The main limitation
of the approach is that operating in a different staircase
necessitates manual recalibration.

Albert et al. [6] implemented a stair-climbing algorithm on
the bipedal robot BARt-UH. The authors employstereo vision
and the projection of a laser line in order to estimate stair
dimensions. These are then used in a planning algorithm that
produces piecewise analytical joint trajectories. The trajectory
parameters are tabulated for different stair dimensions and

interpolated as needed. Therefore, BARt-UH can be consid-
ered an autonomous stair climber. However, the demanding
control of a legged robot, due to its higher center of gravity
and its intricate actuation, result in high computational load
and overall system complexity. This severely limits the robot’s
speed during stair climbing.

The humanoid robots of Sony and Honda, QRIO and
ASIMO, are also capable of autonomous stair climbing.
QRIO [7] employsstereo visionto segment planar surfaces.
These surfaces are used in a path planning algorithm that
allows the robot to climb up and down stairs, sills and ledges.
In [8], Hirai et al. outline the foot placement algorithm
employed in Honda’s humanoid ASIMO. Both robots use
dense stereo vision, requiring the robots to move slowly in
order to ensure image quality.

Stair climbing with a hexapod robot has been demonstrated
by Moore et al. [9]. The robot RHex makes use of a special
curved leg design and pre-programmed leg trajectories, ren-
dering it capable to climb stairs of various dimensions. The
employed algorithm, however, is strictlyopen-loop. It is thus
unable to prevent collisions with the stair walls or balustrades,
and cannot compensate large heading deviations induced by
slippage or shocks.

C. Hybrid Locomotion

Matsumotoet al. [10] have devised a hybrid biped leg-
wheeled system, combining the advantages of wheeled lo-
comotion with the greater flexibility of legs. They derive
a wheel torque control algorithm to robustly position the
robot’s center of gravity, using gyroscopes, accelerometers,
encoders, and torque/force sensors for feedback. The robot
forward-tilt angle is estimated by a combination of angular
velocity integration and gravity vector measurements, although
details about the estimation of the center of gravity location
are omitted. The torque derivations are based on a quasi-
static analysis, assuming low robot speed and smooth motion.
Moreover, the stair dimensions are used as parameters of the
control law, but are not estimated online and therefore need
to be known a priori.

D. Tracked Robots

Several works have examined stair climbing for tracked
robots, which is within the focus of this paper. Tracked robots
have a larger ground contact surface than wheeled vehicles,
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and are more stable than bipeds due to their low center of
gravity. Liu et al. [11] derive the fundamental dynamics of the
stair-climbing process for a tracked robotic element, analyzing
the different phases of riser climbing, nose crossing, nose
line climbing and the effects of grouser bars or cleats. The
analysis is limited to 2D, and slippage, shocks, and intermittent
loss of track-surface contact, phenomena that are commonly
encountered during stair climbing, are neglected. The resulting
model is therefore not sufficiently accurate to allow exact
trajectory prediction, but is well-suited for preliminary design
studies of one- and multi-element tracked robots.

In [1], Martens and Newman note the difficulties involved
in teleoperated stair climbing of tracked robots. This task
is very demanding on the operator, due to limited sensor
feedback and track slippage. The results are slow speed and
inaccurate heading, which can lead to toppling of the robot. In
order to allow semi-autonomous stair climbing, they develop
a stabilizing feedback controller that enables the robot to
maintain its heading, using only accelerometers. However,
the fact that accelerometers measure both gravity and body
accelerations can lead to large errors when employing these
sensors to estimate the robot’s attitude.

Steplight et al. [12] rely on measurements from sonar, a
monocular camera, and two accelerometers for attitude estima-
tion. The authors argue that these sensors are complementary,
each providing reliable estimates under different conditions.
An example is the above-mentioned use of accelerometer
measurements to infer attitude using the gravity vector: this
provides quite accurate results when the robot is standing
still, but fails when the robot is subject to shocks and bumps.
A so-called “broker module” determines which estimate to
use at every time instant, depending on a confidence measure
provided by each sensor. This confidence measure is largely
based on heuristics, and is often inversely proportional to the
deviation from the prior attitude estimates.

An approach for determining the robot’s heading usingonly
monocular vision is presented by Xiong and Matthies [13].
The algorithm extracts lines from stair images in order to
determine the two quantities necessary for steering control,
namely (i) the offset angle describing the robot heading
relative to the stairs, and (ii) the ratio of the distances to the left
and right boundaries of the staircase, which is an indicator for
the relative distance from the centerline. This work is extended
in [14], where an EKF is used to fuse 3D attitude information
from gyroscope measurements, vision, and a laser scanner.
The high frequency of the inertial measurements, and thus of
the EKF, allows for high-bandwidth control that increases the
robustness and accuracy of stair climbing significantly.

One of the main drawbacks of both [13] and [14] are the
ad-hoc assumptions underlying the computation of the yaw
estimate and its variance from the images. First, it is assumed
that the robot is oriented parallel to the plane of the stair
edges at all times (i.e., zero roll and constant pitch). This does
not reflect the pronounced disturbances induced by slippage
and bouncing (cf. the roll and pitch angle profiles during stair
climbing shown in Fig. 3). Second, when the projections of
the stair edges on the image plane are processed to estimate
the yaw, its covariance is approximated by the inverse of
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Fig. 3. The time-evolution of the robot’s roll and pitch angles during a
typical ascent. Note the significant variation in the pitch angle.

the squaredy-intercept of the line on the image plane. This
approximate yaw measurement and its associated variance
is then provided to the EKF as an inferred measurement in
order to update the attitude estimates. However, the imprecise
approximations of both the derived yaw and its variance
degrade the resulting attitude estimates.

This paper further improves the work presented in [14], in
that a new measurement model is derived that allowstight
integrationof the visual information (that is, the detected stair
edges) into the EKF, thus increasing robustness and accuracy
of the attitude estimate. Additionally, an improved method to
detect the ratio of the distances to the left and right wall is
presented, based only on camera and gyroscope data. This is
used for maintaining the robot’s trajectory along the stair cen-
ter, thus decreasing the risk of collision with the balustrades.
Employing a camera for updating the attitude estimates, and
keeping the robot close to the centerline, eliminates the need
for a laser scanner, resulting in reduced mass, volume, cost,
and power consumption. The presented analysis shows that
our measurement model allows observability of two degrees
of freedom when only stair edges (parallel to one global unit
vector) are detected. Furthermore it is proven that the robot
attitude becomes fully observable if at least one additional
line (of known global direction, different from that of the stair
edges) is detected in the image (cf. Appendix III).

III. A TTITUDE AND DISTANCE RATIO ESTIMATION

To safely control the robot’s trajectory on the stairs, precise
estimates of the robot’s attitude, as well as of the distance
ratio to the left and right boundaries (e.g., walls or railings)
of the traversable surface of the stairs, are necessary. Due
to the highly dynamic robot-surface interaction, resulting in
significant slippage, odometry is not sufficiently accurate and
reliable for this task. Instead, we employ an EKF to fuse
rotational velocity measurements with measurements of the
projections of stair edges on the camera images. In this
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Fig. 4. The robot on the stairs with the defined frames shown: The global
frame{G} affixed to the stairs, the local frame{L}, attached to the robot,
and the camera frame{C}. The width of the stairs is denoted byw.

section, we describe the various components of the estimation
algorithm.

A. Attitude Estimation

1) Dynamic Model replacement:In order to estimate the
robot’s 3D attitude, it would be desirable to precisely model
the robot dynamics, and treat the control commands as inputs.
In our approach we employ sensor modeling instead, using the
measurements from the gyroscopes to propagate the attitude
estimate, and camera information to update it. The main
reasons for this are: (i) dynamic modeling is dependent on
robot and stair parameters, and would thus require calibration
for every new stair, and (ii) dynamic model-based observers
require a large number of states that increase the computa-
tional needs without producing superior results. This has been
documented in the literature before; the interested reader is
referred to [15], [16] and [17] for a detailed discussion.

2) Attitude Representation:The robot’s attitude describes
the relationship between the global coordinate frame{G}
and the robot-fixed local coordinate frame{L}. As shown
in Fig. 4, {G} is affixed to the stairs, such that they-axis is
parallel to the edges of the steps and thez-axis is pointing
upwards. Additionally, we define a camera-fixed coordinate
frame {C}, whose relationship to the local frame{L} is
known and constant.

The Euler angles yaw, pitch, and roll, which are the most
commonly used attitude representation [18], are subject to
singularities. The direction-cosine matrix, another popular
representation, suffers from redundancy, comprising nine ele-
ments of which only three are independent. We have therefore
selected the quaternion attitude representation, allowing for
compact, singularity-free, and efficient attitude computation.
The following derivations are largely based on [17], [19] and
can be found in more detail in [20].

The four-element unit quaternion of rotation is defined as

q̄ =
[
q
q4

]
=

[
k̂ sin(θq/2)
cos(θq/2)

]
, q̄Tq̄ = 1 (1)

where k̂ is the unit vector along the axis of rotation, andθq

denotes the rotation angle. Using the convention of [21], the

product of quaternions is defined such that it corresponds to
the product of rotation matrices in the same order, i.e.,

K
J C(K

J q̄) · J
I C(J

I q̄) = K
I C

(
K
J q̄ ⊗J

I q̄
)

(2)

whereJ
I C is the rotation matrix that expresses the basis vectors

of frame{I} in terms of frame{J}. We use the quaternion1

q̄ = L
Gq̄ to describe the global frame{G} expressed in the local

robot frame{L}. The correspondence between quaternion and
rotation matrix is given by

L
GC(q̄) = I3×3 − 2q4bq×c+ 2bq×c2 (3)

wherebq×c denotes the skew-symmetric cross-product matrix

bq×c =




0 −q3 q2

q3 0 −q1

−q2 q1 0


 (4)

Our controller uses as inputs the yaw and pitch angles, which
can be extracted from the rotational matrix following the Euler
X-Y-Z angles (roll-pitch-yaw) convention [22].

3) Attitude Kinematics:The time evolution of the quater-
nion depends on the rotational velocityω of the robot. Given
ω, the attitude is governed by the differential equation

˙̄q(t) =
1
2

Ω(ω(t)) q̄(t) (5)

where

Ω(ω(t)) =
[−bω×c ω
−ωT 0

]
(6)

In order to compute the attitude during robot operation, we
employ a first-order numerical integrator [23] for the quater-
nion, assuming thatω evolves linearly during the integration
time step∆t = tk+1 − tk. Under this assumption, we can
integrate Eq. (5) as

q̄k+1 =

(
exp

(
1
2

Ω(ωa)∆t

)
+

1
48

(
Ω

(
ωk+1

)
Ω

(
ωk

)

−Ω
(
ωk

)
Ω

(
ωk+1

))
∆t2

)
q̄k (7)

where
ωa =

ωk+1 + ωk

2
(8)

denotes the average rotational velocity during the integration
interval [tk, tk+1].

4) Gyroscope Sensor Model:Instead of the true rotational
velocity required for the quaternion integration, the gyro-
scopes provide only a noise-corrupted measurementωm. The
objective of the EKF is to obtain an estimate of the atti-
tude by fusing these gyroscope measurements with additional
information from a monocular camera. During propagation,
the rotational velocity measurementsωm are integrated. The
resulting estimate is corrected using stair-edge observations
from the camera in the update step, which will be discussed
in Section III-A.9.

In order to obtain the estimate, the EKF requires knowledge
of the measurement noise characteristics. Noise in gyroscope

1For clarity of notation, we will henceforth drop the prescripts and simply
denote the quaternionLGq̄ representing the robot’s attitude asq̄.
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measurements is known to be correlated [19]. We therefore
employ anoise shaping filter, modeling the measured rota-
tional velocityωm as the true valueω corrupted by the drift
rate biasb and drift rate noisenr. The bias itself is modeled
as a random walk process and included in the state vector,
i.e., x =

[
q̄T bT

]T

7×1
. The gyroscope measurement model

can hence be written as

ωm(t) = ω(t) + b(t) + nr(t) (9)

ḃ(t) = nw(t) (10)

wherenr,nw are independent, additive white Gaussian noise
processes with zero mean

E[nr(t)] = 0, E[nr(t)nr(t′)T ] = σ2
rc

I3×3δ(t− t′) (11)

E[nw(t)] = 0, E[nw(t)nw(t′)T ] = σ2
wc

I3×3δ(t− t′) (12)

In the above expressions,δ(·) denotes the Dirac delta function.
The state space model is

[
˙̄q
ḃ

]
=

[
1
2 Ω(ωm − b− nr) q̄

nw

]
(13)

⇔ ẋ = f(x, ωm,n) (14)

Note that the updates using the line measurements from
the camera will also affect the bias estimates through the
correlations between bias and quaternion.

5) Continuous-Time Error-State Model:The error state of
the proposed attitude estimator includes the error in the bias
and the quaternion estimate. While the bias error is defined as
the vector difference between the true and the estimated bias,
b and b̂ respectively,

∆b = b− b̂ (15)

a multiplicative error representation is chosen for the quater-
nion. Here, the attitude error is modeled as the infinitesimal
rotation that causes the estimated attitude to match the true
orientation. In quaternion algebra, this is expressed as

q̄ = δq̄ ⊗ ˆ̄q ⇔ δq̄ = q̄ ⊗ ˆ̄q−1 (16)

Application of the small angle approximationδθq ' 0 ⇒
cos(δθq/2) ' 1, sin(δθq/2) ' δθq/2 leads to

δq̄ =
[
k̂ sin(δθq/2)
cos(δθq/2)

]
'

[
k̂δθq/2

1

]
=

[
1
2δθ
1

]
(17)

As evident from Eq. (17), the error information is contained
primarily in the tilt angle vectorδθ3×1. Therefore the attitude
uncertainty can be represented by a3 × 3 covariance matrix
E[δθ δθT ], thus circumventing the loss of rank that would
arise in a4 × 4 covariance matrixE[δq̄ δq̄T ] due to the unit
quaternion constraint.

The error state vector2 of the EKF is given by

x̃ =
[

δθ
∆b

]

6×1

(18)

2Notice that the state vectorx is of dimension7 × 1, whereas the error
state vector̃x has size6× 1.

Substituting Eqs. (16), (17) in (5), and (15) in (10), we can
derive the system propagation equation for the continuous-time
error state [20]:
[ ˙δθ
∆̇b

]
=

[−bω̂×c −I3×3

03×3 03×3

] [
δθ
∆b

]
+

[−I3×3 03×3

03×3 I3×3

] [
nr

nw

]

⇔ ˙̃x = Fc · x̃ + Gc · n (19)

The covariance of the noise vectorn is E[nnT ] = Qcδ(t−t′),
whereQc is a block-diagonal matrix, with diagonal elements
σ2

rc
I3×3 andσ2

wc
I3×3 (cf. Eqs. (11) and (12)).

6) State Propagation:For implementation on a digital
computer, we need to discretize the continuous time state
model. Based on Eqs. (9) and (10), the discrete-time gyroscope
model can be written as

ωk = ωmk
− bk − nrk (20)

bk+1 = bk + nwk (21)

and thus the estimated values of these quantities are computed
as

ω̂k+1|k = ωmk+1 − b̂k+1|k (22)

b̂k+1|k = b̂k|k (23)

The subscript(·)k+1|k denotes the estimate at time stepk + 1
conditioned on all available measurements up to time stepk.

In order to propagate the attitude estimate, we employ the
quaternion integrator of Eq. (7) with the estimated rotational
velocity ω̂.

7) Covariance Propagation: The error-state equation
(Eq. (19)) is discretized as

x̃k+1 = Φk · x̃k + nd (24)

In order to implement the discrete form of the covariance
propagation equation of the EKF, we need to determine the
state transition matrixΦk, as well as the discrete-time system
noise covariance matrixQd. Assuming thatω is constant
over the integration time step∆t, we can compute the state
transition matrix as

Φ(tk+1, tk) = exp
(∫ tk+1

tk

Fc(τ) dτ

)
(25)

while the discrete-time system noise covariance matrixQd is
computed according to

Qd =
∫ tk+1

tk

Φ(tk+1, τ)Gc(τ)QcGT
c (τ)ΦT(tk+1, τ) dτ

The detailed expressions forΦ and Qd can be found in
Appendix I. For clarity of notation, from now on we denote
Φ(tk+1, tk) = Φk.

Following the regular EKF equations [17], we can compute
the covariance of the propagated state estimate as

Pk+1|k = ΦkPk|kΦT
k + Qd (26)

In order to increase the accuracy of the attitude estimates, it
is necessary to useexteroceptivemeasurements of features in
the robot’s environment, to periodically update the orientation
estimates. In the application under consideration the most
prominent features are the stair edges. We have therefore



6

developed an algorithm that processes the images recorded
by an onboard camera, detects the projections of the stair
edges, and employs these observations to update the attitude
estimates.

8) Addressing Processing Delays:In our implementation,
the gyroscope measurements are processed at a rate of 100Hz,
whereas the time needed for processing each image is approxi-
mately 60msec. In order to treat the existing processing delays,
we employ an approach similar to the one proposed in [24]
for treating measurements that depend on previous states. In
particular, at time-stepk, when an image is registered, a copy
of the filter state is created and added to the state vector. The
error state is also duplicated, and thus the augmented error-
state vector at time-stepk is given by

x̆k|k =
[
x̃k|k
x̃sk|k

]
(27)

where x̃sk|k denotes the static copy of the state, which does
not evolve in time. During the time interval[k, k+d], while the
image is being processed, rotational velocity measurements are
integrated to propagate the evolving state, while the second,
static copy, remains unchanged. The benefit of this formulation
is that when the measurement becomes available at time-step
k + d, both the current stateand the state at the time instant
of the image registration are included in the augmented filter
state vector. Thus, the measurement error can be expressed as
a function of the augmented filter state, and the standard EKF
equations can be applied for updating.

In order to correctly update the current state, the covariance
matrix of the augmented filter state must also be computed.
We note that, since state augmentation creates two variables
that contain the exact same information (cf. Eq. (27)), these
are initially fully correlated. Thus, the covariance matrix of
the augmented state vector at time stepk, immediately after
the augmentation is performed, is:

P̆k|k =
[
Pk|k Pk|k
Pk|k Pk|k

]
(28)

At every time step when a rotational velocity measurement
is processed, the current robot state is propagated as shown
in the preceding section, while the previous, static state,
remains unchanged. Thus, the error propagation equation for
the augmented state vector is:

x̆k+1|k =
[

Φk 06×6

06×6 I6×6

]
x̆k|k +

[
nd

06×1

]

= Φ̆kx̆k|k + n̆d (29)

and the covariance matrix of the augmented state is propagated
according to

P̆k+1|k = Φ̆kP̆k|kΦ̆T
k +

[
Qd 06×6

06×6 06×6

]

=
[
ΦkPk|kΦT

k + Qd ΦkPk|k
Pk|kΦT

k Pk|k

]
(30)

It is straightforward to show by induction that ifd propagation
steps take place in the time interval between image registration

and the time that the line measurements become available to
the filter, the covariance matrix̆Pk+d|k is determined as

P̆k+d|k =
[

Pk+d|k Fk+dPk|k
Pk|kFT

k+d Pk|k

]
(31)

where

Fk+d =
d−1∏

i=0

Φk+i (32)

Pk+d|k in Eq. (31) is the propagated covariance of the state
at time-stepk+d, which is computed by recursive application
of Eq. (26).

The expression in Eq. (31) indicates that exploiting the
structure of the propagation equations allows for the co-
variance matrix of the filter to be propagated with minimal
computation. Essentially, compared to the case where only
the current state is kept in the state vector, the only additional
computation that needs to be performed every time a new
gyroscope measurementωmk+i

, becomes available, is the “ac-
cumulation” of the state-transition matrices,Φk+i, to evaluate
the termFk+i. Since only one matrix multiplication per time-
step is necessary, this can be performed very efficiently.

9) State and Covariance Update:In this section, we de-
scribe the measurement model we employ for performing EKF
updates. In each of the images recorded by the camera, a
straight-line detection algorithm is applied (cf. Appendix II)
to obtain measurements of the projections of the stair edges
in the image. In the following we assume, without loss of
generality, that all quantities are expressed with respect to a
normalized camera frame with unit focal length.

The output of the line detection algorithm is a set ofM line
measurements, given by

`mj = `j + nj , j = 1 . . . M (33)

where`mj is the measured line,̀j is the true line on the image
plane, andnj is a 3× 1 noise vector, with covariance matrix
Rj (cf. Eq. (80)). A line is defined by its polar representation,
i.e.,

`j =
[
cos φj sin φj −ρj

]T
(34)

where (φj , ρj) are the line parameters, representing the ori-
entation and magnitude of the line’s normal vector (

−−→
OPj

in Fig. 5). A point p with homogeneous image coordinates
p = [u v 1]T lies on the linè j if it satisfies the equation

u cosφj + v sin φj − ρj = 0 ⇒ pT `j = 0 (35)

We now derive a geometric constraint relating the measure-
ments of the lines on the image plane with the robot’s attitude.
Let O denote the principal point of the image plane,F denote
the focal point of the camera, anduj = [sin φj −cosφj 0]T

be a (free) unit vector along the line on the image plane. From
Fig. 5 we observe that the vectorsuj and

−−→
FPj =

−−→
FO+

−−→
OPj =

[ρj cosφj ρj sin φj 1]T define a plane that contains the
observed line (i.e., it contains the vectorei). The normal vector
to this plane is defined as

−−→
FPj × uj =




ρj cos φj

ρj sin φj

1


×




sin φj

− cos φj

0


 =




cosφj

sin φj

−ρj


 = `j (36)
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Stair edge

Fig. 5. Spatial relationship between the observed unit vectorei, the line on
the image plane with unit vectoruj , the line measurement vector`j , and the
observation jacobianHT

qj
. The focal point of the camera is denoted asF ,

and the point on the line with minimum distanceρj to the principal pointO
asPj .

Since the vectorei is contained in the plane with normal vector
`j , we obtainei ⊥ `j , and thus

(
Cei

)T
`j = 0 ⇒ eT

i CT (C
Gq̄s)`j = 0 (37)

whereC(C
Gq̄s) is the rotational matrix that transforms vectors

from the global frame to the camera frame at the time instant
that the measurement was recorded.3

The expression in Eq. (37) defines the geometric constraint
that relates the vector̀j , associated with a line projection
in the image, to the global unit vectorei. This expression is
exact for thetrue quaternion representing the rotation between
the global and the camera frame, and for thetrue projection
of a line on the image. These quantities, however, are not
available in practice. Instead, a noise-corrupted measurement
of the line equation (cf. Eq. (33)) and the estimate of the
robot’s orientation at the time of the image registration,ˆ̄qs,
are known. Due to errors in the line measurement and the
robot’s orientation estimate, when the constraint of Eq. (37) is
evaluated using the estimates of the corresponding quantities,
a residualarises:

rj = zj − ẑj

= eT
i CT (C

G
ˆ̄qs)`mj − 0

= eT
i CT (C

G
ˆ̄qs)`mj (38)

where C(C
G

ˆ̄qs) is the estimated rotation matrix between the
camera and the global frame.

In order to express the residual as a function of the errors
in the robot attitude estimate,̄̂qs, and in the line measure-
ment,`mj , we denote the quaternion representing the rotation
between the camera frame and the robot frame asC

L q̄, thus
obtaining:

C(C
G

ˆ̄qs) = C(C
L q̄)C(ˆ̄qs) (39)

3An alternative way to derive the constraint in Eq. (37) is to note that the
vanishing point along the vectorei projects on the pointp = C(C

Gq̄s)ei in
the image plane. Since this point lies on the line`j in the image, Eq. (37)
follows directly from application of Eq. (35).

and

C(C
Gq̄s) = C(C

L q̄)C(q̄s)
= C(C

L q̄)C(δq̄s)C(ˆ̄qs) (40)

whereδq̄s = q̄s ⊗ ˆ̄q−1
s represents the error quaternion at the

time instant of the image registration. Thus we can rewrite
Eq. (38) as:

rj = eT
i CT (C

G
ˆ̄qs)`mj − eT

i CT (C
Gq̄s)`j

= eT
i CT (ˆ̄qs)

(
CT (C

L q̄)`mj
−CT (δq̄s)CT (C

L q̄)
(
`mj

− nj

))

By employing the small angle approximation [19]:

C(δq̄s) ' I3×3 − bδθs×c , (41)

and ignoring quadratic error terms, we obtain the following
expression for the residual:

rj ' eT
i CT (ˆ̄qs)bCT (C

L q̄)`mj
×cδθs + eT

i CT (ˆ̄qs)CT (C
L q̄)nj

=
[
01×6 Hsj

]



δθk+d|k
∆bk+d|k

δθs

∆bs


 + Γjnj

= Hjx̆ + Γjnj (42)

where we have denoted

Hsj =
[
eT

i CT (ˆ̄qs)bCT (C
L q̄)`mj×c 01×3

]

=
[
Hqj 01×3

]
(43)

Γj = eT
i CT (ˆ̄qs)CT (C

L q̄) (44)

Eq. (42) defines the linearized residual error equation for one
line, that results from the projection of a known unit vector
ei. If multiple lines are detected in an image, the residuals
corresponding to all lines can be stacked to form a residual
vector, which can consequently be used for performing EKF
updates.

In our implementation, we are employing measurements of
the projections of the stair edges, which are parallel to the
global y-axis. Although straight lines other than stair edges
can generally also be detected in the images (cf. Fig. 12), it
is not easy to determine the corresponding global unit vector.
In order to discard any measurements that do not belong to
lines parallel to the globaly-axis (unit vectore2), we perform
a gating test with every detected line, prior to using it for state
updates. In particular, for each line we compute the residual
rj using Eq. (38), and require that it satisfies the Mahalanobis
distance test:

r2
j

HsjPk|kHT
sj

+ ΓjRjΓT
j

< γ (45)

where γ is equal to the 99-percentile of theχ2
1 distribution

(i.e., γ = 6.63). Fig. 6 shows an example image recorded by
the robot’s camera. The lines that pass (fail) the Mahalanobis
distance test are superimposed with solid (dashed) lines. Note
that the accepted lines do not necessarily belong to the stair
steps, but they are all parallel to the globaly-axis.
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In order to perform the EKF updates, all lines that pass the
gating test are used to define theM × 1 residual vector

r = Hx̆ + Γn

=
[
0M×6 Hs

]
x̆ + Γn (46)

where r is the vector with elementsrj (Eq. (38)), Hs is
a matrix with block rowsHsj

(Eq. (43)), Γ is a block-
diagonal matrix with elementsΓj (Eq. (44)), andn is an error
vector with block elementsnj (Eq. (33)). Since the errors
in the measurements of the individual lines are independent,
the covariance matrix ofn is a block diagonal matrix,R,
with diagonal elementsRj (computed using Eq. (80) in
Appendix II).

Eq. (46) defines the innovation of the EKF update. The
covariance matrix of the innovation is given by

S = HP̆k+d|kHT + ΓRΓT

= HsPk|kHT
s + ΓRΓT (47)

and thus the Kalman gain matrix is determined as:

K = P̆k+d|kHT S−1 =
[
Kk+d

Ks

]
(48)

whereKk+d is the Kalman gain for the current state, andKs

is the gain for the static state (i.e., for the state at the time
instant of image registration). It is important to note that the
static copy of the state doesnot have to be updated, as only
the current attitude is necessary for motion control. Therefore,
evaluation ofKs is not necessary, and is omitted to reduce
computations. The block element ofK corresponding to the
current state is given by (cf. Eqs. (31), (47) and (48)):

Kk+d = Fk+dPk|kHT
s (HsPk|kHT

s + ΓRΓT )−1

The current error-state correction is computed as
[

δ̂θk+d

∆̂bk+d

]
= Kk+dr

The update for the quaternion is given by

ˆ̄qk+d|k+d = δ̂q̄k+d ⊗ ˆ̄qk+d|k (49)

where

δ̂q̄k+d =

[
1
2 δ̂θk+d√

1− 1
4 δ̂θ

T

k+dδ̂θk+d

]

The update for the bias estimate is simply

b̂k+d|k+d = b̂k+d|k + ∆̂bk+d (50)

Finally, the covariance matrix for the current state is updated
as:

Pk+d|k+d = Pk+d|k −Kk+dSKT
k+d (51)

For clarity, we present the steps of the attitude estimation
algorithm in Table 1.

Algorithm 1 Attitude Estimation Kalman filter
Propagation: Every time a rotational velocity measurement is
received:

• propagate the current state estimate using the estimated
rotational velocities at the last two time steps in Eq. (7),
and Eqs. (22) and (23)

• propagate the covariance of the current filter state, using
Eq. (26)

• if a copy of a previous state is present (i.e., if an image
is currently being processed), compute the matrixFk+i

using Eq. (32)

Copying the state: Every time an image is recorded:

• create a copy of the current quaternion estimate and the
current state covariance matrix

Update: Every time line measurements from an image become
available:

• perform gating tests for all detected lines (Eq. (45))
• use the lines that pass the gating test to update the state

using Eqs. (49) and (50)
• update the covariance of the current state vector using

Eq. (51)
• discard the static copy of the state

B. Estimating the distance ratiodL/dR

In order to avoid collisions with the boundaries of the stairs,
the centering controller requires an estimate of the robot’s
distance to the walls. Given the projections of the stair edges,
it is possible to estimate the ratio of the distances from the
camerato the left and right ends of the stairs. We note that
this ratio will in general differ from the ratio of the distances
of the robot’s center from the ends of the stairs. However, for
small steering angles this difference is not significant, and we
found that it does not hinder the controller’s performance.

The 3D coordinates of two points that lie on the left and
right ends of a stair edge are given respectively by:

GpL =




xo

w
zo


 and GpR =




xo

0
zo


 (52)

where the width of the stairs is denoted byw, and the
coordinatesxo and zo can be arbitrary (cf. Fig. 4). The
projective image coordinates of the projection of the left
endpoint on the image are determined by:

pLp =
1
cL

[
C(C

Gq̄s) CpG

] [
GpL

1

]

=
1
cL

[
C(C

Gq̄s) −C(C
Gq̄s)GpC

] [
GpL

1

]

=
1
cL

C(C
Gq̄s)

(
GpL − GpC

)
(53)

where the vectorGpC = [xc yc zc]T denotes the position
of the camera in the global coordinate frame, andcL is an
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arbitrary nonzero scalar. From the last expression we obtain:



xo − xc

w − yc

zo − zc


 = cLCT (C

Gq̄s)pLp (54)

By employing similar derivations for the right endpoint of
the stair edge, we obtain




xo − xc

−yc

zo − zc


 = cRCT (C

Gq̄s)T pRp (55)

for some nonzero multiplicative constantcR.
At this point, we note that the distance of the camera

from the left side of the stairs isdL = w − yc, while
the distance from the right side isdR = yc. Moreover, an
estimate for the right-hand side of Eqs. (54) and (55), up
to a multiplicative constant, can be computed by employing
the estimate for the camera attitude,C(C

G
ˆ̄qs) = C(C

L q̄s)C(ˆ̄qs)
and the measured image coordinates of the endpoints of the
line, pRpm and pLpm . Thus, if the multiplicative constants
in Eqs. (54) and (55) were known, it would be possible to
directly estimate the quantitiesdR = yc and dL = w − yc

from these equations. However, due to the scale uncertainty
introduced by the use of a single camera, only the ratio of the
multiplicative constants can be computed. By noting that the
first and third elements of the vectors in the left-hand side of
Eqs. (54) and (55) are equal, we can estimate the ratiocL/cR

as

cL

cR
=

√√√√
(
eT
1 CT (C

G
ˆ̄qs)pRpm

)2 +
(
eT
3 CT (C

G
ˆ̄qs)pRpm

)2

(
eT
1 CT (C

G
ˆ̄qs)pLpm

)2 +
(
eT
3 CT (C

G
ˆ̄qs)pLpm

)2

and thus an estimate for the ratio of the distancesdL/dR can
be computed as

dL

dR
=

w − yc

yc
=

cL

cR

∣∣∣∣
eT
2 CT (C

Gq̄s)pLpm

eT
2 CT (C

Gq̄s)pRpm

∣∣∣∣ (56)

In every processed image, an estimate for the ratiodL/dR

is computed from each of the lines that are found to be
parallel to the globaly-axis. Our experiments have shown
that these estimates can vary significantly within an image,
due to the fact that the localization of the lines’ endpoints is
not very reliable. Several factors contribute to this: (i) Due
to the properties of light reflection, the corners between the
stairs and the adjacent walls are illuminated less than the rest
of the stairs. (ii) Due to the accumulation of dirt and the
effects of use, the ends of stair edges often have different
appearance than the center. (iii) The robot undergoes rapid
rotations about itsx-axis (which coincides with the camera
z-axis), as a result of the tracks’ interaction with the steps
(cf. Fig. 9). These rotations result in image blurring, that is
more significant at larger angles from the optical axis. (iv)
The camera lens exhibits vignetting, thus resulting in lower
contrast towards the periphery of the images.

The above discussion indicates that it is necessary to employ
a robust scheme for fusing the ratio estimates of different
lines, to ensure that spurious measurements do not cause large
fluctuations in the robot’s ratio estimate. In order to discard

Fig. 6. An example image recorded by the camera, with the detected lines
that passed the Mahalanobis test superimposed as solid lines. The dashed lines
are those discarded by the gating test.

conspicuous outliers, we do not consider lines that are shorter
than lines above them in an image. This constraint arises from
the geometry of the projection model, which dictates that lines
that are closer to the robot (and thus lower in the image)
should appear larger4. Moreover, we employ a median filter to
compute the median ratio estimate from all the lines detected
in the last five image frames. Since the median is not sensitive
to the existence of a small percentage of outliers in the data,
the ratio estimates we obtain are more robust. We note at this
point that the delay introduced by this temporal averaging is
not significant: since images are processed at a rate of 15Hz,
any large change in the true ratio of distances (for example,
due to large slippage), will be detected on average in less than
0.2sec.

IV. M OTION CONTROL

A. Overview

The two main objectives of the stair-climbing control al-
gorithm are: (i) maximize the time that the robot is heading
directly up the stairs, and (ii) keep the vehicle away from the
staircase boundaries. The first goal is necessitated primarily
by the observation that the actual stair-climbing speed is
significantly affected by the robot heading. Specifically, even
when both track motors are commanded to rotate at the same
rate, the actual linear and rotational velocities of the vehicle
depend on the angle between the track cleats and the stair
steps. When the cleats are parallel to the stair edges, both
tracks exert maximum and approximately equal forces on the
steps which results in efficient stair climbing at high speed. In
contrast, if the cleats engage the stair edges at a large angle,
the track-surface interaction becomes highly nonlinear and
difficult to model. This is primarily due to the elasticity of the
tracks, the time-varying friction coefficients, and the rapid and
unpredictable changes in the percentage of the tracks’ surface

4An exception applies for lines that extend up to the end of the image. In
our implementation, these lines are not discarded by this rule.
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that is in contact with the stairs. This complex interaction
causes disturbances in the motion of the vehicle (intense track
slip, large lateral velocities and rotational accelerations) whose
magnitude increases with the robot velocity. This situation can
lead to uncontrollable motion and failure due to collisions or
even toppling of the vehicle.5

Under ideal conditions of operation, aheadingcontroller
designed so as to minimize the heading error estimated by
the EKF (Section III) should be sufficient for guaranteeing
that the robot will travel straight up the stairs. As long as
the vehicle starts at the center of the stairs, it should be
expected that it will finish close to the staircase centerline.
However, the trajectory disturbances due to the highly dynamic
motion profile, often cause the robot to move towards the
boundaries of the staircase. In order to avoid collisions with
the walls or the stair railing, it is necessary to be able
to detect when the vehicle approaches the stair sides and
provide appropriate correction. To this end, we have designed
a centeringcontroller, which, given the ratio of the distances
to the stair boundaries (Section III-B), changes the reference
signal (heading direction) of the heading controller and brings
the vehicle closer to the centerline. This two-tiered approach
to the design of the stair-climbing controller system (cf. Fig. 2)
is described in detail in the following two sections.

At this point, we should note that the centering controller
computes a heading directionθr, every time it receives an
estimate of the distance ratio,dL/dR. These estimates become
available asynchronously from the image processing algorithm
at a ratefc '15Hz. The heading controller receives as input
(i) the heading reference directionθr dictated by the centering
controller, (ii) the yaw,θ̂, and pitch,α̂, estimates from the
EKF, and (iii) the desired linear velocity of the vehicle,V ,
specified by the user. The output of the heading controller is
the commanded rotational velocity,ωd, of the robot. Although
estimates of the vehicle’s heading are provided from the EKF
at a rate offe=100Hz, the heading controller operates at
fh =30Hz. This rate has been determined experimentally to
be fast enough to react to the dynamics of the vehicle while
placing reasonable computational demands on the system. The
input and output signals for both controllers are depicted in
Fig. 2.

B. Centering Controller

As previously mentioned, the optimal heading direction for
a stair-climbing vehicle isθr = 0. However, when the robot
approaches the staircase boundaries, the threat of collision
requires the centering controller to deviate from the optimal
heading direction and steer the robot away from the stair
sides. The information available to the centering controller for
predicting whether the robot is outside a “safe zone” around
the centerline, is the ratio of the distancesdL/dR to the left
and right boundaries of the staircase (Fig. 7). Since the ratio

5These observations are corroborated by numerous trials of human operators
attempting to remotely control the vehicle up the stairs. The most common
modes of failure are: (i) collision with the staircase boundaries, (ii) toppling
of the vehicle. The main reasons for these events were high lateral velocities
and/or sudden changes of the motion direction that caused the vehicle to align
parallel to the stair edges.

ω

dL dR

CG

O

θ

Fig. 7. Diagram of vehicle on the stairs. CG is the center of gravity, O is the
center of rotation,θ is the heading direction, anddL, dR are the distances
to the left and right of the stairs, respectively. Note in this plot that the dark-
grey regions correspond to the “non-safe” areas close to staircase boundaries,
while the white and light-gray regions are considered as “safe” areas. When
the vehicle steers away from the stair ends, at a commanded angleθr = θd,
it needs to pass through the light-grey area and move within the white region
before the heading controller switches its reference signalθr back to the
nominal heading direction of 0 degrees.

is a non-symmetric function of the robot location relative to
the staircase centerline, the centering controller uses instead
as input the normalized ratioδ = min(dL/dR, dR/dL), 0 ≤
δ ≤ 1. Additionally, the sign valuesδ = sign(dL/dR − 1)
is computed to determine the direction of the deviation from
zero heading. The output of the centering controller is the
reference signalθr provided to the heading controller (Fig. 2).
The centering controller is implemented as a step function with
hysteresis:

θr =
{

0, δ ≥ δc

sδ · θd, δ < δc
(57)

whereθd = 10o is the magnitude of the direction change, and
δc = 3

7 (δc = 4
7 ) is the normalized distance ratio threshold

for detecting when the robot leaves (enters) the safe region
around the stair centerline. Note that the thresholdδc receives
different values (hysteresis when switching between regions)
depending on the direction the normalized ratioδ approaches
these from. This is necessary so as to avoid oscillations of
the reference signalθr on the region boundary. The values
of θd and δc have been determined experimentally in order
to minimize the disturbances on the vehicle motion and the
probability of collision with the stair boundaries.

C. Heading Controller

In order to ensure that the vehicle will follow the heading
direction dictated by the centering controller, a model-based
heading controller has been designed. In what follows, we
describe the system model employed for this purpose and the
derived state-feedback controller.
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Fig. 8. Motor controller and motor block diagram.

1) System Model:A dynamics-based model of the vehicle
is developed in order to design a heading controller for use
during stair climbing. A detailed description of modeling
techniques for tracked vehicles is presented in [25] and [26].
In this work, we have approximated the dynamics of the
robot climbing stairs as a second-order linear system. This
approximation does not invalidate the model; it limits though
the range of application of the designed heading controller to
small angles (|θ| < 30o) of robot heading direction. The main
advantage of this linearized model is that it allows for the use
of formal control-system design techniques when designing
the heading controller [27].

As shown in Fig. 7, the center of gravity (CG) of the vehicle
used in our implementation is above its center of rotationO.
The equation that describes the rotation of the vehicle in a
plane defined by the stair edges is

Izω̇ = TO + mgdCG sin α sin θ −Mr (58)

where ω̇ = θ̈ is the rotational acceleration,θ is the heading
direction, andTO is the torque exerted by the motors about the
vehicle’s center of rotation,O. The parameters in the above
equation are: (i)Iz is the moment of inertia about the z-
axis, computed by weighing the individual subcomponents of
the vehicle and measuring their location relative toO, (ii)
m is the mass of the robot, (iii)g is the magnitude of the
gravitational acceleration, (iv)dCG is the distance of the CG
from O, (v) α is the inclination of the stairs, and (vi)Mr is
the rotational resistance. This last parameter is computed as
Mr = µmg cos αL/8, whereL is the length of the tracks,
and µ is the coefficient of lateral resistance, estimated from
experimental data as in [28]. For small values of the heading
direction (sin θ ' θ), Eq. (58) can be approximated by the
following equation:

Iz θ̈ = TO + mgdCG sin α θ −Mr (59)

In this last expression, the torque,TO, on the robot body is
computed as:

TO = (FR − FL)b/2 (60)

where b is the distance between the tracks andFR (FL) is
the force exerted by the right (left) track of the vehicle on
the steps. These forces are related to the correspondingmotor
torquesTm

R andTm
L by the following expressions:

FR =
ng

rs
Tm

R , FL =
ng

rs
Tm

L (61)

wherers is the radius of the sprocket that drives each track
andng is the gear ratio between the motor and the sprocket.

Substituting from Eq. (61) in Eq. (60), it is:

TO = (Tm
R − Tm

L )
ngb

2rs
(62)

The commanded motor torqueTm
j , j ∈ {R,L} is the output

of the motor controller (cf. Fig. 8) which is modelled as a
PD controller with characteristic functionhmc(s) = kp +kds,
and input the differencẽωm

j between the desired̄ωm
j and the

actualωm
j rotational velocity of the motor. Since the response

of the motor controller is extremely fast compared to the
vehicle dynamics, the relationship betweenTm

j and ω̃m
j can

be approximated as:

Tm
j = kmc ω̃m

j = kmc

(
ω̄m

j − ωm
j

)
, j ∈ {R,L} (63)

Applying the final value theorem tohmc(s), it can be shown
thatkmc = kp, which is known from the motor specifications.
Substituting from Eq. (63) to Eq. (62), it is:

TO =
kmcngb

2rs
(ω̃m

R − ω̃m
L ) (64)

The motor rotational velocityωm
j is given by:

ωm
j = Vj

ng

rs
, j ∈ {R, L}

whereVj is the linear velocity of the corresponding track, and
ng andrs are defined as before. Employing this last expression
and the kinematic relationship between the linear velocities of
the two tracks and the rotational velocity of the robot, i.e.,

ω = (VR − VL) /b ,

it is readily shown thatωm
R − ωm

L = ng

rs
ω, ω̄m

R − ω̄m
L = ng

rs
ω̄,

and thus

ω̃m
R − ω̃m

L =
ng

rs
ω̃ (65)

where ω̃ = ω̄ − ω is defined as the difference between the
commanded,̄ω = ˙̄θ, and the actual,ω = θ̇, rotational velocity
of the vehicle body. Substituting from Eqs. (64) and (65) in
Eq. (59), we have:

Iz θ̈ =
kmc

2

(
ngb

rs

)2

( ˙̄θ − θ̇) + mgdCG sin α θ −Mr

Rearranging the terms in this last equation and making the
following substitutions

kv =
kmc

2Iz

(
ngb

rs

)2

, kg =
mgdCG sinα

Iz
, ωd = ˙̄θ − Mr

kvIz

we have:

θ̈ = −kv θ̇ + kg θ + kv ωd

This model can be written in standard state-space form as:
[

θ̇

θ̈

]
=

[
0 1
kg −kv

] [
θ

θ̇

]
+

[
0
kv

]
ωd ⇒

ẋ(t) = A x(t) + b u(t) (66)
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2) Controller Design: Once the state-space model (cf.
Eq. (66)) is developed, a number of techniques can be
employed to design the controller. In this work, we have
selected a pole placement approach which has the advantage
of being able to explicitly specify the resulting dynamics of the
controlled system within the constraints of the actuators [27].
The result of this design is a control law expressed as:

u(t) = −kT x(t)

wherek is the vector of the controller gains.
A few modifications to Eq. (66) are required before applying

the pole placement design method. The first of these is to
discretize it at a rate equal to that of the controller. As
mentioned before, a heading control rate offh=30Hz was
determined sufficient for reacting to the vehicle dynamics. The
discrete-time form of Eq. (66) is:

x(k + 1) = Ad x(k) + bd u(k) (67)

whereAd and bd are the equivalent discrete-time state and
and input matrices.

The second modification is the augmentation of the state
vector with a heading-error integral term̃xI , and the addition
of a reference signalθr(k), i.e.,
[

x̃I(k + 1)
x(k + 1)

]
=

[
1 hT

0 Ad

] [
x̃I(k)
x(k)

]
+

[
1
0

]
θr(k)

+
[

0
bd

]
u(k)

⇒ x̆(k + 1) = Ăd x̆(k) + c̆d θr(k) + b̆d u(k) (68)

with hT = [−1 0]. This extra state term̃xI is required so as to
eliminate any steady-state error that may occur in the system
due to disturbances caused by the unmodeled dynamics of
the interaction between the vehicle tracks and the stair steps.
The reference signalθr(k) is included in this last equation in
order to allow for the centering controller to modify the system
behavior by changing the heading direction of the vehicle
when the robot moves close to, or away from, the staircase
boundaries.

The design of the heading feedback control law,u(k) =
−k̆d x̆(k), affects several aspects of the system. The first
obvious effect is on the dynamics of the resulting system in
terms of stability, response speed, and damping. A secondary
consideration, contradictory to the first, is the minimization
of the energy expended during stair climbing. A balance of
these two is achieved by selecting a damped system on the
order ofζ = 0.7 without affecting the natural frequency of the
system significantly [27]. The effect of the controller design
on the response of the system has also been iterated both in
simulation and experimentally in order to refine the design.

V. EXPERIMENTAL RESULTS

A. Implementation details

The estimation and control algorithms described in the pre-
ceding sections have been implemented on an iRobot Packbot
tracked vehicle. The robot, shown in Fig. 1, is equipped with
two retractable small arms, that are used as extensions of the

tracks to facilitate climbing the first step of the stairs. After the
initial alignment to the stairs (described in detail later in this
section) is complete, the robot positions its arms at an angle of
60o from the ground, and starts approaching the stairs. Once
the robot starts ascending, the arms are extended forward, to
maximize traction. The two different positions of the robot’s
arms can be seen in Figs. 1 and 2.

The proprioceptive measurements in our implementation are
provided by an Inertial Science ISIS IMU, operating at 100Hz.
A Pointgrey Firefly camera is used, recording grayscale images
at a rate of 15Hz, with a resolution of 640×480 pixels. The
algorithms have been implemented in C++, and run in real time
on a Pentium-3 onboard computer (800 MHz CPU, 256MB
RAM) operating under Linux. The most computationally ex-
pensive procedure of the algorithm is the detection of the
lines in the images, which requires approximately 60msec of
processing time per image. The time necessary for propagating
the state and the covariance is approximately 0.2msec, while
the time needed for covariance update is approximately 3msec
in the worst case (the actual update processing time depends
on the number of detected lines).

Both sensors (gyroscope and camera) have been calibrated.
Intrinsic camera calibration has been performed by application
of Zhang’s method [29], to estimate the linear parameters of
the perspective model and the nonlinear distortion parameters.
Using the resulting calibration, the pixel coordinates of image
points can be transformed to the normalized image plane by
employing the inverse model of Heikkila et al. [30]. The
rotation between the camera and robot frames is known from
the engineering drawings of the robot. The gyroscope cali-
bration consists of determining the continuous-time standard
deviation of the noise processesnr andnw, which have been
estimated asσrc = 6.3 × 10−5(rad/sec)/

√
Hz, and σwc =

8× 10−6(rad/sec2)/
√

Hz.
At the beginning of every run up the stairs, the state vector

and its covariance must be initialized. An initial estimate
for the gyroscopes’ biases and their variance is produced by
computing the sample mean and sample variance of gyroscope
measurements, recorded while the robot remains static for
5sec. In order to initialize the attitude, we consider the ground
at the bottom of the stairs approximately horizontal6, and
thus the only remaining unknown variable is the robot’s
rotation about thez-axis (yaw). This is estimated using the
algorithm presented in [13], from the projections of lines in
the image. If the robot is not initially aligned with the global
coordinate frame, it rotates until the angle between the robot
and global frames is smaller than a threshold (equal to 5o in
our implementation).

The robot’s attitude is initialized using the estimate for the
robot’s yaw after the initial alignment, and assuming zero
rotation about the globalx- andy-axes. The standard deviation
of the initial attitude errors is set to0.66o for the roll and
pitch errors, and2o for the yaw error. These values correspond
to ±3σ error intervals of(−2o, 2o) for the roll and pitch
errors, and(−6o, 6o) for the yaw (cf. Fig 11). The relatively

6Alternatively, the roll and pitch angles can be determined from the values
of the accelerometers of the IMU, or from an inclinometer, in case the robot
is on uneven terrain.
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large initial standard deviation for the yaw is chosen so as to
allow for correcting potentially large errors in the initialization,
which may result if the robot is too close to the stairs (and thus
visibility is limited), or if spurious lines exist in the image.

As soon as the robot reaches the top of the stairs, it has
to immediately detect this, stop, and switch to a different
“behavior” (possibly searching for the next flight of stairs
to climb [13]). Failure to do so may result in collisions and
equipment damage. Since the latency of the EKF attitude esti-
mates is very low (approximately 0.2msec), we have decided
to employ these in order to detect the robot reaching the
top of the stairs. In particular, when the robot’s pitch in 10
consecutive time-steps (corresponding to a time interval of
0.1sec) is smaller than 5o in absolute value, the robot stops.
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Fig. 11. The time evolution of the standard deviations for the angular errors.

B. Results

A large number of tests has been carried out to examine
the performance of the proposed stair-climbing scheme, and
we hereafter present representative results from one of the
experimental runs. In Fig. 9, the estimated Euler X-Y-Z
angles (roll-pitch-yaw) representing the robot’s attitude, and
the estimated distance ratiodL/dR are plotted. Note that
the Euler angles are not directly estimated by the filter, in
which a quaternion representation of rotation is used. They
are presented in the figure to facilitate visualization, since
plotting the time evolution of the quaternion elements does
not provide an intuitive understanding of the robot’s attitude.
The robot’s yaw angle is also compared with the reference
angleθr determined by the centering controller.

In this run, the robot completed climbing the first step
at approximatelyt = 2.7sec, and shortly after, the first
reliable distance ratio became available. The robot correctly
determined that it was positioned too close to the left wall,
and the centering controller commanded the robot to head at
an angle of10o to the right (cf. Fig. 9). At approximately
t = 7sec the robot entered the center zone, and therefore the
reference angle of the heading controller becameθr = 0o.
However, due to slippage, the robot again moved to the left
“non-safe zone” after 2sec (cf. Fig. 7), and the reference angle
was set to−10o once again. At approximatelyt = 11sec, the
robot’s distance ratio crossed the thresholdδc = 4/7, and the
robot remained in the center zone until it reached the top of
the stairs, at approximatelyt = 13sec.

In Fig. 10, we plot the residuals of the line measurements,
computed by Eq. (38), for all the lines that passed the gating
test (Eq. (45)) during the run. These residuals are compared
to the±3σ bounds corresponding to the diagonal elements of
S (Eq. (47)). We observe that no noticeable bias is present,
which indicates that the estimator is consistent, and that the
employed sensor noise models are sufficiently accurate. The
plots in Fig. 11 show the standard deviation of the angular
errors. The plotted lines represent the square roots of the
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(a) (b) (c)

(d) (e) (f)

Fig. 12. (a) Location: Tampa Police and Fire Training Academy tower, Tampa, FL, material: metal, slope:35o, illumination: daylight (b) Location:
CS&E Department 5th floor, University of Minnesota, material: plastic/carpet, slope:28o, illumination: poor indoor lighting (c) Location: CS&E Department
study commons, University of Minnesota, material: metal, slope:30o, illumination: indoor lighting (d) Location: Columbia Heights Central Middle School,
Minneapolis, MN, material: linoleum, slope:30o, illumination: heavily back-lit (window on top of stairs) (e) Location: Walter Library lobby, University of
Minnesota, material: marble, slope:25o, illumination: indoor lighting (e) Location: Digital Technology Center, University of Minnesota, material: carpet,
slope:33o, illumination: indoor ambient daylight.

diagonal elements of the state covariance matrix corresponding
to the attitude. From this figure, it becomes clear that the
pitch is unobservable, as the variance of the errors around the
robot’s y axis monotonically increases. Contrary to that, the
variance of the errors in the roll and yaw remains bounded,
indicating that these degrees of freedom of the attitude are
observable. These results corroborate the theoretical analysis
of observability, presented in Appendix III.

Although we are not able to obtain ground truth attitude
information for the entire duration of this experiment, we
observe that the robot’s pitch and roll angles at the top of
the stairs are equal to0.4o and 0.1o, respectively. In all our
experimental runs, we have observed that the roll and pitch
at the top of the stairs is consistently smaller than1o, in
absolute value. Comparing these results with the estimated
standard deviations of the angular errors (equal to0.15o for
roll and1.4o for pitch in this run), and taking into account the
inaccuracies in the construction of the stairs, indicates that the
covariance estimates accurately describe the uncertainty in the
robot’s attitude, and thus are consistent.

As shown in Fig. 9, the heading controller is able to reduce
the error between the actual vehicle direction and that dictated
by the centering controller to within roughly5o. The variations
from the nominal heading direction are due to disturbances
in the system, caused by the dynamics of the interaction
between the vehicle tracks and the stair steps, which are very
difficult, if not impossible, to model. In contrast, the errors

in the yaw estimates provided by the EKF become smaller
than 1o after only a few seconds (cf. Fig. 11). Thus, the
estimation errors are significantly smaller than the errors in the
vehicle’s commanded heading direction. This is actually the
main reason for selecting sensor- instead of dynamic modeling
when designing the estimator for this task. Similar cases have
previously appeared in the literature (e.g., [15]) where even in
the case of an orbiting satellite whose external disturbances
are minimal, efforts to incorporate the vehicle dynamics in
the design of the state estimator have not resulted in increased
accuracy. On the contrary, the non-linear dynamics often have
a negative impact on the performance of the estimator, as these
introduce high-frequency components and biases that increase
the errors in the state estimates [17].

We note at this point that the results presented in this
section, that pertain to a single run of the robot up the stairs,
are typical of the algorithm’s performance. Averaging over
all our recorded runs, the rms value of the deviation of the
robot’s heading from the commanded direction was equal to
3.54o, while the average value of the normalized distance ratio,
δ = min(dL/dR, dR/dL), was equal to 0.62. These values are
computed using the estimates for the robot’s attitude and for
the ratio of distancesdL/dR, as no ground truth is available.
This performance has been determined, through extensive
experimental validation, to be sufficient for the purposes of
autonomous stair climbing.
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C. Reliability

One of the primary concerns during the development of
the stair-climbing algorithm is the algorithm’s robustness to
variations in environmental factors (e.g., illumination condi-
tions, slope and appearance of stairs, slippage characteristics
due to the surface material of the stairs, to name a few). We
have conducted over 300 tests on different types of stairs,
for example stairs covered by marble, metal, linoleum, and
carpet, both indoors and outdoors, during different times of
the day, and with slopes varying from 25o to 35o. It is worth
noting that the algorithm has been successfully demonstrated
at the NSF Industry/University Cooperative Research Center
(I/U CRC) on Safety, Security, and Rescue Research (SSR-
RC) Spring 2005 Symposium in Tampa, FL, as well as at
several community and industry outreach activities of the
Digital Technology Center of the University of Minnesota.
Example images from some of the tests we have performed
are shown in Fig. 12. We note that camera gain calibration is
performed adaptively based on the image intensity only in the
part of the image where lines are detected. This often results
in saturation in other parts of the image, especially when the
stairs are less well-lit than the background. This approach,
however, facilitates edge detection by increasing contrast in
the areas of interest.

In our tests, we have consistently observed that orientation
estimation is very accurate and robust. We attribute this to
the high accuracy of the gyroscopes, and the effective outlier
rejection (cf. Eq. (45)). The algorithm was able to correctly
estimate the robot’s heading inall the tests we performed. The
only mode of failure that we have observed in our experiments
is erroneous estimation of the ratio of distances to the left and
right boundaries of the stairs. This only occurred in badly-lit
indoor environments, when the surface of the stairs is covered
by dark-colored material. In these cases, the endpoints of
the stairs cannot always be reliably detected, thus sometimes
resulting in the robot coming in contact with the wall or
railing. This type of failure occurred in less than 10% of the
cases where the robot attempted to climb dark and badly-lit
stairs, and we believe that by placing a small light source on
the robot, this problem can be eliminated.

VI. CONCLUSIONS

In this paper, we have presented an algorithm for au-
tonomous stair climbing with a tracked vehicle. Through
extensive experimentation, we have verified that this task can
be accurately and reliably performed by a robot that receives
and processes data from only two sensors: (i) the rotational
velocity measurements provided by a 3-axial gyroscope, and
(ii) the line parameters estimated from the stair-edges’ projec-
tions on a camera image. Specifically, we have designed an
EKF estimator that fuses these measurements and computes
precise attitude estimates at a high rate. Additionally, we
have described the process we employ for estimating the
robot’s relative distance to the stair ends, from the stair-edge
measurements. This information is utilized by a centering
controller that modifies the vehicle’s heading direction every
time the robot approaches the staircase boundaries. Finally,

we have designed a state-feedback heading controller, based
on the dynamics of the vehicle, that computes the required
rotational velocities of the robot in order to steer the vehicle
in the heading direction dictated by the centering controller.
Contrary to previous approaches, our algorithm offers a tight
integration of inertial and visual information, and can be
applied on different robot models and stair types.

At this point we should note that the algorithm described
in this paper, relies on the assumption that all stair edges are
parallel, straight lines. Extending the algorithm to work in
more general stairways, such as spiral staircases, is a possible
direction of future research. Furthermore, we are currently
investigating means to improve the robustness of estimating
the ratio of the distances to the left and right stair boundaries.
In the near future, we are planning to complement our existing
algorithm with procedures for autonomous stair descent and
automated search for stairs.

ACKNOWLEDGMENTS

This work was supported by the University of Minnesota
(DTC), the Jet Propulsion Laboratory (Grant No. 1251073,
1260245, 1263201), and the National Science Foundation
(ITR-0324864, MRI-0420836). The authors would like to
thank Joel Hesch, Le Vong Lo, Faraz Mirzaei, Kyle Smith,
and Thor Andreas Tangen for their invaluable support during
hardware/software development and experimental testing and
validation. The authors would further like to thank the anony-
mous reviewers, who helped improve the quality of this paper
through their insightful comments.

APPENDIX I
DISCRETE-TIME MODEL

The discrete-time state transition matrixΦk is a block
matrix with the following structure:

Φk =
[

Θ Ψ
03×3 I3×3

]
(69)

The matricesΘ andΨ can be computed as

Θ = I3×3 − 1
|ω̂| sin (|ω̂|∆t) bω̂×c

+
1
|ω̂|2

(
1− cos(|ω̂|∆t)

)bω̂×c2 (70)

Ψ = −I3×3∆t +
1
|ω̂|2

(
1− cos(|ω̂|∆t)

)bω̂×c

− 1
|ω̂|3

(|ω̂|∆t− sin(|ω̂|∆t)
)bω̂×c2 (71)

When |ω̂| is small, both of the above expressions will lead
to numerical instability. By taking the limit and applying
L’H ôpital’s rule, we arrive at

lim
|ω̂|→0

Θ = I3×3 −∆tbω̂×c+
∆t2

2
bω̂×c2 (72)

lim
|ω̂|→0

Ψ = −I3×3∆t +
∆t2

2
bω̂×c − ∆t3

6
bω̂×c2 (73)
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The discrete-time noise covariance matrixQd has the fol-
lowing structure

Qd =
[
Q11 Q12

QT
12 Q22

]
(74)

and the elements follow after considerable algebra as

Q11 = σ2
r∆t · I3×3 + σ2

w ·
(
I3×3

∆t3

3

+
(|ω̂|∆t)3

3 + 2 sin(|ω̂|∆t)− 2|ω̂|∆t

|ω̂|5 · bω̂×c2
)

(75)

Q12 = −σ2
w ·

(
I3×3

∆t2

2
− |ω̂|∆t− sin(|ω̂|∆t)

|ω̂|3 · bω̂×c

+
(|ω̂|∆t)2

2 + cos(|ω̂|∆t)− 1
|ω̂|4 · bω̂×c2

)
(76)

Q22 = σ2
w∆t · I3×3 (77)

As in the case of the state transition matrix, we can derive the
form for small|ω̂| by taking the limit and applying L’Ĥopital’s
rule

lim
|ω̂|→0

Q11 = σ2
r∆t · I3×3 + 2σ2

w

(
I3×3

∆t3

3!
+

∆t5

5!
· bω̂×c2

)

lim
|ω̂|→0

Q12 = −σ2
w ·

(
I3×3

∆t2

2!
− ∆t3

3!
· bω̂×c+

∆t4

4!
· bω̂×c2

)

For a detailed derivation of the above expressions, the
interested reader is referred to [20].

APPENDIX II
L INE EXTRACTION

The images recorded by the robot’s onboard camera are
processed to detect the projections of the stair edges. The
detected lines are employed (i) for updating the robot’s attitude
estimate, and (ii) for estimating the ratio of the robot’s
distances to the left and right boundaries of the stairs. In the
following, we outline the steps of the straight-line detection
algorithm.

A. Edge detection

The first step in the processing of each image involves
application of Canny’s edge detection operator [31]. In order
to achieve invariance of the edge detection procedure to illu-
mination changes, as well as to the effects of blurring, that is
caused by the robot’s rapid orientation changes, the thresholds
in the Canny algorithm are selected adaptively. In particular,
the standard deviation,σG, of the image gradient along the
vertical image direction is computed, and the cutoff-values
in Canny’s hysteresis-based edge thresholding are selected as
(σG, σG/4).

B. Straight-line detection

The output of the edge detection process is a set of edge
segments. Given the normalized coordinatespi = (ui, vi), i =
1 . . . N of the points in thej-th edge segment, total least-
squares line-fitting is performed to obtain an estimate of the
best straight-line fit. Lines are parameterized using the polar
representation (cf. Eq. (34)), and the line parameters(φj , ρj)
are determined by minimizing the weighted sum of squared
distances of all the pointspi to the line (cf. Eq. (35)):

(φj , ρj) = arg min
φ,ρ

J(φ, ρ)

= arg min
φ,ρ

N∑

i=1

1
σ2

(ui cos φ + vi sin φ− ρ)2 (78)

whereσ is the standard deviation of the errors in the image
coordinates of the detected edge points.

For each line, the covariance matrix of the line parameters
is computed, and denoted as

P`j =
[

σ2
φj

corr(φj , ρj)
corr(φj , ρj) σ2

ρj

]
(79)

whereσ2
φj

is the variance of the line’s orientation,σ2
ρj

is the
variance of the line’s distance from the origin of the image
coordinate frame, andcorr(φj , ρj) is the correlation between
the line orientation and distance.

In order to discard all segments that do not correspond to
straight lines, we perform aχ2 compatibility test. Specifically,
the weighted sum of the squared distances of all pointspi

to the line `j , J(φj , ρj), is a random variable, distributed
according toχ2

N−2. In order to filter out edge segments that do
not correspond to straight lines, we discard edges with values
for J(φj , ρj) exceeding a threshold equal to the 99-percentile
of the χ2

N−2 distribution.
Once all the straight lines in the image have been detected,

we examine whether some of the detected lines correspond to
the same physical line. For this purpose, all lines are examined
in pairs, and if the difference in the lines’ parameters is small,
total least-squares line-fitting is performed using the points
that belong to both lines. If the resulting line satisfies the
aforementionedχ2 criterion, then the two lines are merged.
This process is applied recursively, until no more lines can be
merged.

In the EKF update of the robot’s attitude, the covariance
matrix of the line equation vector,̀j , is necessary (cf. Sec-
tion III-A.9). This is computed as:

Rj =
(∇[φj ρj ]T `j

)
P`j

(∇[φj ρj ]T `j

)T

=



− sin φj 0
cosφj 0

0 −1


P`j

[− sin φj cos φj 0
0 0 −1

]
(80)

APPENDIX III
OBSERVABILITY ANALYSIS

In order to analyze the stochastic observability of the
proposed attitude filter, we will examine a slightly simplified
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system that neglects the gyroscope bias.7 Similarly to Eq. (46)
in Section III-A.9, we can then write the residual for all line
measurements as

r = Hqx̃′ + η (81)

In this case, however,̃x′ = δθ, so thatHq is a matrix with
rows

Hqj = eT
i CT (q̄)bCT (C

L q̄)`j×c (82)

The noise termη = Γn is Gaussian with zero mean and
covariance

cov(η) = ΓRΓT (83)

As before,Γ andR are block-diagonal matrices, with diagonal
elements

Γj = eT
i CT (q̄)CT (C

L q̄) (84)

andRj as in Eq. (80).
From the block-diagonal structure ofΓ andR, we see that

cov(η) is a diagonal matrix with positive, scalar diagonal
elements

cov(η)jj = ΓjRjΓT
j (85)

Recalling the definition ofRj from Eq. (80), we see that it is
of rank 2, assuming thatP`j

is of full rank. Moreover,

Null(Rj) = γ




cφj

sφj

0


 , γ ∈ R (86)

In order forcov(η)jj to be zero,ΓT
j = C(C

L q̄)C(q̄)Gei = Cei

must lie in this nullspace. Assuming that this is the case, we
proceed by applying the measurement constraint, Eq. (37)

CeT
i `j = 0 ⇒ γ

[
cφj sφj 0

]



cφj

sφj

−ρj


 = 0 (87)

⇒ γ = 0 ⇒ Cei = 0 (88)

Obviously, Cei = 0 is impossible, since by definition
||ei|| = 1, which completes the proof by contradiction. We
can therefore conclude, that all diagonal elements ofΓRΓT

are different from zero, so thatcov(η) is always invertible.
Stochastic observability requires that there exist positive

constantsα, β with α < β < ∞ and a positive integerN
such that, for allν ≥ N ,

αI3×3 ≤
ν∑

µ=ν−N+1

ΦT
q (tµ, tν)HT

q (tµ) cov(η)−1(tµ)Hq(tµ)Φq(tµ, tν)

≤ βI3×3 (89)

or, in other words, that the inner sum of matrices is of full
rank [17].

Note that Eq. (70) implies thatΦq = Θ is the rotational
matrix

Φq(tµ, tν) = C(Lµ

Lν
q̄) (90)

7Intuitively, if the attitude is observable, the bias is also observable, as can
be verified for a simple 1-D example.

Pre- and post-multiplication of Eq. (89) withCT (Lν

G q̄) and
C(Lν

G q̄) respectively, changes the inner expression to
ν∑

µ=ν−N+1

C(G
Lµ

q̄)HT
q (tµ) cov(η)−1(tµ)Hq(tµ)C(Lµ

G q̄) (91)

Due to the particular block-structure ofHq and cov(η), this
can be decomposed as

ν∑

µ=ν−N+1

M∑

j=1

cov(η)−1
jj C(G

Lµ
q̄)HT

qj
(tµ)Hqj

(tµ)C(Lµ

G q̄)

which is a sum of outer product matrices, sinceGHT
qj

=
C(G

Lµ
q̄)HT

qj
is of dimension3 × 1. The rank of the observ-

ability matrix is therefore equal to the number of linearly
independent vectorsGHT

qj
. Algebraic transformation ofGHT

qj

shows that this vector is the cross product of the line vector`j

and the unit vectorei, both expressed in global coordinates:

GHT
qj

= CT (q̄)
(
eT

i CT (q̄)bCT (C
L q̄)`j×c

)T

=
(
eT

i bCT (q̄)CT (C
L q̄)`j×c

)T

= − bG`j×cGei

= Gei × G`j

This implies that allHT
qj

are orthogonal toei and are thus
confined to one plane (i.e., do not span the 3D space). We
can therefore conclude that if we observe only edges parallel
to one unit vector (as is the case for stair edges parallel to
the globaly-axis), the observability matrix will be at most
of rank 2. Note that this does not changeregardless of the
robot’s trajectory. The rotation about the observed unit vector
ei, in our case the pitch angle, will remain unobservable, as
corroborated by Fig. 11.

However, in the general case where at least two linearly
independent unit vectorsvi, i = 1, 2 are observed three times,
the attitude becomes fully observable. This is equivalent to
the matrixHT

q =
[
HT

q1
HT

q2
HT

q3

]
having full rank, where

HT
qj

= vi × `j , i = 1 or 2, j = 1, 2, 3, and vi and
`j are expressed with respect to the same coordinate frame.
Depending on the vectorsvi and the observed lines̀j , there
can arise several singular cases, of which the following is of
particular interest:
• vi = v: If we only observe one unit vector, the matrix

will be at best of rank 2. As discussed previously, this is
the case when the robot observes only stair edges, i.e.,
vi = e2.

• `j = `: This condition requires that all unit vectors
project along the same line on the image (i.e., only one
line direction is observed in the image data).
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