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Path Planning

Ashok K. Goel, Khaled S. Ali, Michael W. Donnellan, Andres Gomez de Silva Garza, and Todd J. Callantine

Georgia Institute of Technology

‘\l TRYING TO DESIGN ROBOTS THAT
can navigate through space, path planning
is a critical task. Path planning takes two lo-
cations in a physical world as input and gives
a path connecting them as output. The tradi-
tional AI approach is to use a goal-directed
heuristic search of problem spaces defined
by spatial models of the navigation world.
We call this family of search methods model-
based search.

Case-based plan reuse offers an alterna-
tive approach, where planners solve new
problems by retrieving and adapting previ-
ously formed plans for achieving similar
goals.! The use of such methods for path
planning raises complex questions: How do
we index cases? How do we organize case
memory? How do we retrieve relevant cases
from the case memory? How do we store a
new plan in the case memory for future use?

In 1990, we started the Router project to
address these questions. Router is a multi-
strategy-strategy adaptive navigation path
planner. It assumes that a mission planner
such as Plexus? has generated a specific mis-
sion plan and identified specific path-plan-
ning tasks. Given a specific path-planning
task, it uses a combination of model-based
and case-based methods to solve it.

We began the project by developing a case-
based adaptive path planner for navigation in

WE USED A SPATIAL MODEL IN ADAPTIVE

PATH PLANNING TO INTEGRATE MODEL- AND

CASE-BASED METHODS. THIS RAISED
QUESTIONS ABOUT STRATEGIC METACONTROL |

simulated worlds. A spatial model of the nav-
igation world provided the indexing scheme
for organizing the case memory. This use of
the spatial model in adaptive path planning
suggested an integration of the model- and
case-based methods, which raised questions
about strategic metacontrol: How might the
combined planner represent the two methods?
How might it flexibly and dynamically select
a specific method for solving a given path-
planning task? How might it use one method
for solving a subtask set up by the other?
New versions of the Router system view
strategic metacontrol as a kind of design task
that takes as input a specification of a prob-
lem-solving task and gives as output the
specification of a virtual architecture for ad-
dressing it. One version of the system oper-
ates in simulated navigation worlds and pro-

THAT WE SOUGHT TO ANSWER.

Another version is embodied in Stimpy, an
autonomous mobile robot.

Stimpy addresses issues in spatial naviga-
tion beyond path planning, such as plan ex-
ecution and monitoring. Our goal here is to
describe our general framework of multi-
strategy adaptive path planning, and the spe-
cific design of the Router system. To focus
this discussion, we will not describe Router’s
embodiment in Stimpy, but instead report on
a series of experiments with Router in simu-
lated navigation worlds.

Spatial model
The spatial model of the navigation world

plays multiple roles in Router. In addition to
defining problem spaces for the model-

vides a simple natural-language interface. | based method, it provides the indexing
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Figure 1. Hierarchical spatial madel.

scheme for organizing the case memory, and :‘
enables model-based case validation and !

plan verification in the context of case-based
path planning.

Representation and organization. Router’s

spatial model captures two kinds of knowl-

edge: the pathways and the neighborhoods. !

The representation of a pathway contains
three types of information:

® Name of the pathway. Curved pathways
are broken into linear segments, which
are named by appending a number to the
base name of the pathway. Discontinuous
pathways are also broken into segments.
e [ntersections between the pathways and
their relative locations. Intersections are
specified as an ordered list that names all

the other pathways that cross a given path- |

way within a particular neighborhood.

o Allowable directions of traversal for the |
pathway. Eight quadrants of the compass |
are used to provide a qualitative direc-

have a complementary direction-pair,
such as (N ) or (NW SE). If a pathway
; allows travel in some direction in princi-
| ple, but cannot be presently traversed due
‘ to some change in the navigation world,
i it is annotated as “blocked” in the given
' direction. Information about this kind of
f dynamic change in the world is acquired
‘ from feedback during plan execution.

Pathways are grouped into neighbor-
hoods, which are organized in a space-sub-
! space hierarchy as shown in Figure 1. This

organization of spatial knowledge is based
| on two criteria:

I ® Relative significance of pathways. Sig-
| nificant pathways (such as those that
! serve as major thoroughfares connecting
J“ distal neighborhoods) are represented at
i a higher level in the hierarchy than less
. significant ones. In Figure 1, thick lines
represent major pathways at the highest

tional measure. Bidirectional pathways |

level; thin lines represent pathways
whose importance is limited to their im-
mediate vicinity.

® Relative vicinity of pathways. Pathways
traversing the same localities in space are
grouped together. Both major and minor
pathways important for navigation in a
given vicinity appear in the associated
neighborhood.

The representation of a neighborhood con-
tains three types of information: Names of
the subneighborhoods; relative directions of
subneighborhoods (based on eight quadrants
of the compass); and pathways in the neigh-
borhood. Pathways are represented sepa-
rately for each neighborhood in which they
occur. For example, a pathway may be rep-
resented in a high-level neighborhood as hav-
ing four intersections (a, b ¢, and d in Figure
1), but as part of a lower-level neighborhood
the same pathway might have seven inter-
sections, with only two of the four (b and ¢)
higher-level ones appearing in the lower-
level neighborhood.

Adjacent neighborhoods at the same level
may partially overlap so that an intersection
situated roughly along their border can belong
to both. This is important for ensuring that a
search between two points in close spatial
proximity is localized to a single neighbor-
hood; if they are in different neighborhoods, a
search in a higher-level neighborhood may re-
sult in a circuitous path between the two points.
Note that Router’s spatial model is only qual-
itative — it contains no quantitative informa-
tion such as distances between locations.

Model updating. To explore some interac-
tions between Router’s model-based and
case-based methods in the presence of dy-
namic changes in the navigation world, we
endowed Router with the capability of up-
dating its spatial model to reflect one kind of
change: the “blocking” of a pathway in a spe-
cific direction of traversal. This model up-
dating is directly based on the information in
the feedback on the execution of a naviga-
tion plan. A user may provide the system re-
ports on the execution of navigation plans in
quasi-English. For example, suppose that a
plan for navigating the Georgia Tech campus
contains a step that specifies “Go East on
Ferst Avenue up to Atlantic
Drive.” Suppose further that the user sup-
plies the following feedback on the execu-
tion of the above plan step: “Plan St ep
Go East on Ferst Avenue up to
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Atlantic Drive” failed because
Ferst Avenue is blocked after
intersection with State Street)
Router would then parse this feedback and
update its spatial model by annotating its rep-
resentation of Ferst Avenue as blocked be-
tween State Street and Atlantic Avenue. The
updating of the model is straightforward be-
cause the feedback explicitly specifies the
cause of the failure of the plan step, and plan
steps in Router’s domain have no side-effects.

Model-based method

Router’s model-based method forms nav-
igation plans by performing a means-ends
analysis on its qualitative spatial model of the
navigation world. Given a specific path-plan-
ning task, the space-subspace hierarchy di-
rectly provides a decomposition of the goal.
The neighborhoods in the hierarchy define
the problem spaces associated with the sub-
goals, and the pathways in the neighborhood
serve as operators in means-ends analysis.

Task structure and control strategy. As
shown in Figure 2, at the highest level,
Router sets up two subtasks of the path-plan-
ning task: the neighborhood-finding task, and
the path-finding task.

The neighborhood-finding task identifies |

the neighborhoods of the initial and goal lo-
cations, and the direction of the neighbor-
hood of the goal location relative to the
neighborhood of the initial location. This is
done by searching the space-subspace hier-
archy for the two locations, starting with the
highest-level neighborhood, then its sub-
neighborhoods, and so on.

The path-finding task takes the initial and
goal locations, their neighborhoods, and their
relative directions as input and gives a path

connecting the two locations as output, De- |

pending on the input, one of three situations
may arise.

The simplest situation is when the initial
and goal locations are in the same neighbor-
hood (for example, 11 and 1F in Figure 1). In
this case, a straightforward search of pathways
in the given neighborhood is undertaken.

In the second situation, initial and goal lo-
cations are in different neighborhoods on the
same level (for example, 21 and 2F in Figure
1). Using the direction information in the
input, the model-based method first attempts
to determine a path in the higher-level neigh-
borhood that connects the lower-level neigh-

Ca;e Case Case Plan Case
retrieval || validation | adaptation || evaluation| storage !
7 ey
/‘ % \ ).'.
Model-based . Model-hased
"spatial simulation" " "spatial simulation"

Figure 2. Router’s tosk struciure.

borhoods. This involves determining loca-
tions common to both the top-level neigh-
borhood and the lower-level neighborhoods
containing the initial and goal locations. A
simple search procedure (described below)
then finds a path from the initial location’s
neighborhood to the goal location’s neigh-
borhood. Next, the model-based method syn-
thesizes a complete path by recursively ap-
plying the same search procedure to the
lower level neighborhoods, and thus connects
the initial and goal locations to the top-level
path determined previously.

In the third scenario, the initial and goal
locations are on different levels (31 and 3F in
Figure 1). If the two locations are separated
by only one level, the path-finding process is
merely a simplification of the previous situ-
ation, because the top-level path already
reaches one of the specified locations. If they
are separated by more than one level, Router
performs the same subtasks recursively to
yield a legal path; that is, a “top-level” path
is found within the lower-level neighbor-
hoods to effectively link pathways occurring
at different levels in the space-subspace hi-
erarchy. Router first plans a top-level path in
the highest neighborhood, but it cannot link
this path directly to location 31. It therefore

| treats the point at which the topmost partial

route enters the mid-level neighborhood as a
secondary final location (designated 3F’) and
recursively links the paths from 3I to 3F' to
the path from 3F’ to 3F.

The procedure for searching pathways

within a neighborhood combines lookahead
and backtracking with a short horizon of
three. The procedure begins by examining
intersections adjacent to the starting inter-
section. Adjacent intersections are further
examined up to three levels, or until the de-
sired destination intersection is found.
Whenever a sequence of intersections is un-
successfully queried, these intersections are
placed on a “used-intersections” list. This
enables the procedure to look ahead and lo-
cate intersections not present in the list and
focus its search on those. After one or two .
levels of search, if all of the next intersec-
tions appear on the used list, the procedure
backtracks and begin a new line of search.
This search procedure operates uniformly
regardless of the particular neighborhood
that is searched.

Case-based method

Router’s case-based method combines
means-ends analysis and plan reuse. The case
memory is organized around the space-sub-
space hierarchy with the neighborhoods act-
ing as indices to the cases. Given a specific
path-planning task, the space-subspace hier-
archy directly provides a decomposition of
the goal, the neighborhoods in the hierarchy
define the problem spaces associated with
the subgoals, and the plans stored in the cases
indexed by the neighborhoods act as “situa-
tion-specific macro-operators.”
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Neighborhood 1

Neighborhood 2 N
Intraneighborhiood case Q

Figure 3. Case adoptation.

Representing cases and organizing case | whose initial and goal locations are the same

memory. A case in Router contains three kinds |

of information: The initial and goal locations
in a past planning episode; the spatial neigh-
borhoods the locations belong to; and the path
connecting the two locations. Cases are indexed
by the initial and goal locations of the stored
plan (where the two locations act as the primary
index), and by the spatial neighborhoods the
locations belong to (where the neighborhoods
act as the secondary index to the case).

The system’s space-subspace hierarchy of
neighborhoods shown in Figure 1 provides
an indexing scheme for organizing case
memory. A case whose initial and goal loca-
tions belong to neighborhoods X and Y, re-

spectively, is indexed by those two neigh- !

borhoods. Thus, if X and Y are the same, then
the case is stored as part of this neighbor-
hood; if X and Y are different, it is stored as
part of X, 'Y; and, if it contains the initial or
goal locations, it is stored as part of the corm-
mon super-neighborhood of X and Y.

Task structure and control strategy. At the
highest level, Router sets up neighborhood-
finding and path-finding as subtasks of the
path-planning task. Router also uses the same
procedure for the neighborhood-finding task
described above. The system’s case-based
method, however, finds navigation paths dif-
ferently. The case-based method sets up five
subtasks of the path-finding task: case re-
trieval, case validation, case adaptation, plan
evaluation, and case storage (see Figure 2).
In case-retrieval, the planner uses the out-
put of the neighborhood-finding task as a
probe into the case memory to search for
cases that match the current problem as
closely as possible. In particular, it searches
the neighborhoods containing the two loca-
tions, first looking for cases exactly match-
ing the specified task, then for partial
matches. Exactly matching cases are those

as those specified for a given path-planning
task. Partial matches, in order of preference,
are cases matching one of the two locations
exactly, with the other location in the same
neighborhood as the other location in the task
specification and cases in which only the
neighborhoods of the initial and goal loca-
tions match those of the task specification.
In general, three situations can result from

. this search: A case that exactly matches the

specification of the current problem is avail-
able in memory; a case that only partially
matches the current problem is available; or
no case in memory even partially matches
the specification of the current problem. In
the first situation, the exactly matching case
contains the solution to the current problem.
The problem is solved simply by retrieving
the previously planned route. In the second
situation, the partially matching case is re-
trieved, and the previously planned route is
adapted to arrive at a solution to the current
problem. In the third situation, the case-based
method alone cannot solve the current prob-
lem and terminates processing.

The next subtask is case validation. Al-
though Router updates its spatial model
based on the feedback on failed plans, it does
not update the case memory, and thus the
case-based method cannot by itself validate
the retrieved plan. A specific pathway could
occur in a large number of cases, and thus
identifying and updating each case where the
pathway occurs is likely to be computation-
ally expensive. Since Router does update the
spatial model, it can validate the retrieved
plan by spatially “simulating” the plan. Thus,
case validation is skipped when Router runs
purely in the case-based mode.

Next, if case retrieval results in a case that
only partially matches the specification of
the given path-planning task, then the case-
method attempts to adapt the retrieved plan

to meet the task specification. The case adap-
tation subtask uses a recursive processing
strategy for adapting the plan: It formulates
path-planning subproblems, recursively
spawns new path-finding subtasks, finds the
solutions to the new path-finding subprob-
lems, and combines their solutions with the
initially retrieved route as shown in Figure 3.

Subproblem formulation involves deter-
mining the ways in which the path contained
in the retrieved plan is incomplete for solving
the current path-planning problem. It results in
the formulation of one or possibly two new
subproblems, for linking the endpoints of the
retrieved path to the locations specified in the
current problem. Recursive path planning is
performed to solve the newly formulated sub-
problems. In the plan-synthesis phase, the so-
lutions obtained in solving the subproblems
are combined to the solution in the initially re-
trieved case. Thus, the case-based method
forms new paths by combining partial solu-
tions contained in multiple cases.

The next subtask is plan verification.
Again, the case-based method by itself can-
not evaluate the candidate navigation plan
for the same reason it could not validate the
retrieved case. This subtask is skipped when
Router runs purely in the case-based mode.

The final subtask is case storage. If the
case-based method is successful in combin-
ing previously planned paths to solve the given
path-planning task, then it stores the newly
found solution in its case memory. The new
case is indexed by its initial and goal locations
and the neighborhoods in which they lie.

In addition to complete plans, Router also
stores partial plans in its memory. For exam-
ple, if it has found a path to go from intersec-
tion a to intersection z—say a, b, ¢, d,..., 2 —
then it stores the entire path as a case for po-
tential reuse, since a future problem may re-
quire it to plan a path from « to z again. In ad-
dition, since the problem of going from any
one intermediate location on the path to an-
other—such as fromatoc,atod, btod and
$0 on — may also arise, the system also stores
these “partial” paths as reusable cases.

Thus, Router automatically acquires ad-
ditional cases as it solves new problems. It
does so irrespective of whether the naviga-
tion plan is generated by the case-based
method, the model-based method, or some
combination of the two. As a result, as Router
solves problems using the model-based
method, it incrementally compiles general
domain knowledge in the form of pathways
into situation-specific cases.
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Integration methods

Router’s model- and case-based methods
have method-specific control strategies. The
case-based method, for example, sets up spe-
cific subtasks of a given task, and specifies
the order of their execution under different
knowledge conditions. The integration of the
two methods, however, raises the additional
question of strategic metacontrol: What
method should Router select and invoke,
given a specific task and a specific knowl-
edge condition? Router’s strategic metacon-
trol not only enables flexible and dynamic
method selection, but also facilitates coop-
eration between the model- and case-based
methods in solving problems and acquiring
the knowledge needed for the problem solving.

Method selection. Router’s mechanism for
strategic metacontrol evolved from rask
structures,® where problem solving is de-
scribed in the high-level vocabulary of tasks,
the methods applicable to the tasks, and the
content and form of knowledge used by
methods as opposed to using low-level lan-
guages and architectures of implementation.
Specifically, Router adopts and adapts the ar-
chitecture for task-integrated problem solv-
ing (TIPS),* which addresses the issue of
method selection based on the task-structures
framework. Tips uses a sponsor-selector con-
trol structure’ to select design plans in the
context of routine design problems.

Router views strategic metacontrol as a de-
sign task with the goal of designing a virtual
problem-solving architecture for addressing
a given path-planning problem. It uses an “in-
trospective” metareasoner for addressing this
task. The metareasoner contains a method se-
lector and a set of method sponsors, with one
sponsor for each method. The general mech-
anism for method selection in the system is
shown in Figure 4. Given a specific task T,
method selection occurs in four steps:

(1) The method selector uses the specifica-
tion of T'1 to probe the method sponsors
associated with the methods M1 ... MN.

(2) The method sponsors inspect the mem-
ory and assess the applicability of the
methods to T1. ’

(3) The method selector picks a specific
method for T1. '

(4) The method selector invokes the se-
lected method.

A core issue in strategic metacontrol is de-
ciding what criteria to use for selecting a

Memory of

| Invocation ]

Figure 4. Method selection architecture.

method, given a specific task 71. In general,
the selection of a specific method depends
on three criteria:®

(1) Desired properties of the solution. Dif-
ferent methods can yield solutions with
different properties, such as optimality
Or correctness.

(2) Compurational constraints of the task.
Different methods can have different
computational requirements, such as
processing time or memory size. These
requirements must be considered with
respect to the computational resources
available to the problem solver.

(3) Knowledge available to the problem
solver. Different methods use different
types of knowledge, such as heuristics,
associations, plans, cases, or models.

While all three criteria are important, the
third is critical: If the knowledge used by a
method is not available, then the problem
solver cannot use the method regardless of
other factors. In Router’s metareasoner, the
method sponsors are responsible for evalua-
tion criterion 3 and the method selector is (or
will be) responsible for criteria 1 and 2. (The
evaluation of criterion 1 is not yet implemented
in Router, and the evaluation of criterion (2) is
implemented only partially and implicitly.)

The method sponsor associated with a
method in Router has two kinds of information:

(1) The tasks for which a method is applic-
able. For example, in addition to path
finding, the model-based method is use-
ful for case validation and plan evalua-
tion as described below.

(2) The knowledge needs of the method. For
example, the sponsor for the case-based
method has knowledge that the method
needs a case that at least partially matches
the specification of the given task.

Given a specific task, the method sponsor
checks whether its method is applicable to
the task. If so, the method sponsor inspects
the store of knowledge, and verifies if the °
knowledge needed by the method is avail-
able. Given this, it offers the method to the
method selector for possible invocation. For
example, given a specific path-finding task,
the sponsor for the case-based method first
uses information about the task to determine
if the case-based method is applicable. The -
sponsor then inspects the case memory to
determine whether a case that at least par-
tially matches the task specification is avail-
able in memory. If it finds a relevant case,
the sponsor offers the case-based method to
the method selector for possible invocation.

Early experiments with Router revealed
that if a case similar to a given problem is
available in memory, then in general, the sys-
tem’s case-based method is computationally
more efficient than its model-based method.”
This is because the similar case immediately
provides a solution in the “neighborhood” of
the desired plan. Thus, the method selector
in Router is biased toward the case-based
method: If a case relevant to a given task is
available in memory, then it invokes the case-
based method instead of the model-based
method; the model-based method is invoked
only if a case relevant to the given task is un-
available.

DECEMBER 1994

61

Ll




PTHY T T o e W e

invoked by the metareasoner could set up |
several subtasks 711, T12, ..., T1M of the task !
T1. Router’s metareasoner recursively ap-
plies the mechanism for strategic metacon- 3

trol to these subtasks, resulting in the inte-
gration of multiple methods in the course of
solving a problem. The tasks of case valida-
tion and plan verification provide examples
of this. As Figure 2 shows, these tasks occur
in the task structure of the case-based

method. The need for these tasks arises be- |

cause the navigation world and the corre-
sponding spatial model may have changed.
The case-based method alone cannot ac-
complish these tasks. Instead, these tasks re-
quire knowledge of the updated spatial
model. For example, Router validates a re-
trieved case by spatially “simulating” the
plan stored in the case, that is, by using the
spatial model to trace the plan steps. Simi-
larly, it uses its spatial model for simulating,
and thus evaluating, a plan generated by the
case-based method.

The task of case adaptation illustrates a
different but related point. Let us suppose
that the case-based method is selected to
solve task instance T1. If the retrieved case
does not exactly match T1, then Router has
to select a method for adapting the retrieved
case. The adaptation task is phrased in the
same form as the initial task specification —
as finding a path that connects the ends of the
path retrieved by the case-based method to

the initial and goal locations specifiedin T1. |

This is presented to the method selector,
which uses the method-selection mechanism
recursively to select a method applicable to
the adaptation task. If it can find a case sim-
ilar to the new task instance, then the method

selector again invokes the case-based |

method. But if no such case is available, it
invokes the model-based method. When the
model-based method achieves a solution to
the adaptation task, the control of processing

returns to the case-based method, and the |
i ciency, and the quality of solutions they pro-

complete plan is synthesized by linking the
segment found by the latter method to the
segment found by the former.

Router’s model- and case-based methods
cooperatively solve path-planning problems.
In fact, the two methods also cooperate in ac-
quiring the knowledge needed for the prob-
lem solving: A plan generated by the model-
based method is stored as a case for potential
reuse by the case-based method, and the spa-
tial model is revised based on experience
with specific plans.

Cooperative problem solving. The method | The experimenis

To investigate the computational trade-offs
between the case- and model-based methods
and the computational advantages of com-
bining them, we conducted a series of abla-
tion experiments with Router.® However,
analysis of the experiments is fraught with
some serious problems.

First, the results of our experiments are de-

clear that our results are generalizable to other
tasks in other domains. Determining this
would require similar experiments in the con-
text of different tasks in different domains.
Second, our results are also dependent on

T0 INVESTIGATE THE TRADE-
OFFS BETWEEN THE CASE-
AND MODEL-BASED METHODS,
WE CONDUCTED A SERIES OF
EXPERIMENTS WITH ROUTER.
HOWEVER, ANALYSIS OF THE
EXPERIMENTS IS FRAUGHT
WITH SOME PROBLEMS.

the design of the Router system. For exam-
ple, the theories of model-based search, case-
based plan reuse, and task-directed integra-
tion of multiple methods can be instantiated
in a number of ways. In fact, neither the
model-based method nor the case-based
method in the system is optimal. In design-
ing the system, we generally opted for sim-
plicity rather than optimality. Thus, it is quite
possible to improve Router’s model- and
case-based methods in terms of their prob-
lem-solving coverage, their processing effi-

duce. But these are only some of the
dimensions along which a given method can
or should be analyzed. The cognitive plausi-
bility of the method, for example, is another
dimension of evaluation — one that our ex-
periments with Router do not explore.

In sum, these experiments evaluate the
system, not the theories underlying it. Nev-
ertheless, we believe that such experimental
evaluations are important. They provide data
points for comparison with other systems,

raise additional issues about the theories im-
plemented in the systems, and indicate the

kinds of experiments needed to resolve them, ~ |

In addition, ablation experiments can help
guide the design of a system. For example,
early ablation experiments with Router indi-
cated that its case-based method is more ef-
ficient than its model-based method. This re-
sulted in our biasing the method selector in

i Router toward the case-based method in sub-
pendent on Router’s task and path-planning |
domain. As with most Al systems, it is not |

sequent designs.

Navigation task and domain. Router oper-
ated with representations of the Georgia Tech
campus in Atlanta, including specific floors
in the College of Computing building. The
input to Router was a pair of spatial locations
representing the initial and goal positions that
the path should connect. The two locations
were among the intersections between the
pathways; the pathways were the streets in the
campus domain, and the corridors and hall-
ways in the College of Computing domain.
The pathways could be uni- or bidirectional,
and more than two pathways could intersect
ata given point. The system output was an or-
dered set of path segments (streets, hallways)
between the initial and the goal locations.
The campus yielded about 10,000 prob-
lems, and the computing building about
1000. We conducted most of the experiments
with Router using 10 sets of 50 path-plan-
ning problems each, where the problems and
their order within a problem set were gener-
ated randomly. Since 50 problems may be
too small a number for testing some of the
above hypotheses, we conducted some ex-
periments on a larger set of 1000 problems.
In all experiments involving multistrategy
reasoning, the case memory was empty at the
beginning of the experiment, but grew as sub-
sequent problem-solving cases were stored in
it. In the experiments involving the exclusive
use of the case-based method, the case mem-
ory had to be primed by adding (randomly
formed) cases to the memory before conduct-
ing the experiments. All experiments were
conducted on a dedicated Sun workstation.

Experiment 1. We designed the first set of ex-
periments to test two related hypotheses re-
garding the computational efficiency of
Router’s model-based method, case-based
method, and multistrategy reasoning:

(1) Router’s case-based method is compu-
tationally more efficient than its model-
based method, hence,
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2) Router’s integration of case-based and
model-based method results in process-
ing at least as efficient as that of the
model-based method.

The data from experiment | confirms Hy-
pothesis 1: When appropriate cases can be
found in memory to execute Router’s (pure)
case-based method, this method is indeed
more efficient than either the model-based or
integrated methods (see Figure 5). The rea-
son is that the case-based method reuses old
plans rather than forming new ones — an old
case that closely matches a given problem
rapidly provides a solution in the “neighbor-
hood” of the desired plan. In addition, this
data shows that Hypothesis 2 is false: When
the number of cases in memory is small,
Router’s model-based method performs
faster than its integrated method on approx-
imately 92 percent of the problems.

Experiment 2. In the second set of experi-
ments, we set out to test two related hy-
potheses regarding the quality of solutions
produced by Router’s model-based, case-
based, and integrated methods:

(1) The case-based method produces solu-
tions of quality equal to those produced
by the model-based method; hence,

(2) The integrated method produces solu-
tions of quality at least equal to those pro-
duced by the model-based method alone.

Testing these hypotheses raises the issue
of how to measure the quality of a solution.
In the domain of navigational path planning,
the logical answer is that a shorter naviga-
tion plan is better than a longer one. How-
ever, since Router contains no quantitative
information (such as distances between lo-
cations), the issue becomes how to measure

the shortness of a navigation plan. We used |

the number of path segments in a navigation

plan for this purpose, where a path segment !

is defined as the path between two consecu-
tive street changes in the overall path:

The data from experiment 2 shows that
both hypotheses are false: In general,
Router’s case-based method produced plans
that were not as parsimonious as the plans
produced by its model-based method, and,
as a result, the integrated method also pro-
duced less parsimonious plans. The model-
based method always produced paths with a
smaller or equal number of path segments
than the case-based method.
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Figure 5. Comparison of average problem solving fimes for different strategies.
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Experiment 3. We designed the third set of
experiments to test a hypothesis about the de-
composition of cases into partial cases: The
decomposition of cases into partial cases (at
storage time) results in more efficient prob-
lem solving (on future problems).

The prima facie justification for this hy-
pothesis is that, in general, storing partial
cases would enable the case-based method to

! retrieve a case more appropriate to a given

problem, and this would reduce the compu-
tational cost of adapting it to meet the speci-
fications of the problem. Testing this hypoth-
esis raises the question of what a reasonable
partial case is. In the domain of navigational
path planning, the logical answer is that par-

tial cases correspond to a subset of the origi-
nal plan, that is, a path from two intersections
specified in the original plan.

The data from experiment 3 shows that the
hypothesis is false. Problem-solving time
was actually increased by the decomposition
of cases into partial cases and the storage of
these partial cases. On average, the problem-
solving time for the entire path-planning
process, including the storage of partial
paths, was 1.7 times longer than the prob-
lem-solving time without storage of partial
paths (see Figure 6). (Because of this result,
all other experiments were conducted with-
out storing partial cases.) We expected that
the use of partial cases would add to the cost
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of retrieving appropriate cases from mem- OJ'REXPERIMENTSWTIHRO[HER

ory, because the memory would contain more
cases. Our analysis of the data, however, in-
dicates that the added cost of retrieval is
small compared to the added cost of decom-
posing the case into partial cases and storing
the partial cases in memory.

Experiment 4. We designed this set of ex-
periments to test two related hypotheses
about the problem-solving coverage and
knowledge requirements of Router’s case-
based method:

(1) The case-based method can be boot-
strapped with relatively few cases in
memory.

The case-based method has the same
problem-solving coverage as the model-
based method, even though its knowl-
edge requirements are smaller.

2

The data from experiment 4 shows that
while hypothesis 1 is true, hypothesis 2 is
false. While Router’s case-based method
can indeed solve some problems with rela-
tively few initial cases in the case memory,
it covers fewer problems than its model-
based method. This data also shows that the
number of problems that can be solved by
the case-based method increases linearly
with the initial number of cases in memory
(see Figure 7). Specifically, we needed to
seed Router’s case-based method with so-
lutions to approximately 16% of all the pos-
sible problems in our domain before it could
solve approximately half of the problems
given to it,

|
i
|
i
i
|
!
i
|

suggest several general lessons for design-
ing multistrategy adaptive navigational path
planners.

First, the use of case-based methods for
navigational path planning requires some
measure for estimating the spatial closeness
between a given problem and a case stored
in memory. The notion of spatial neighbor-
hoods provides one such measure — a new
path-planning problem and a stored case are
spatially close if they belong to the same
neighborhood. This suggests a scheme for
indexing the stored cases by the neighbor-
hoods to which they belong.

Second, the spatial neighborhoods can be
organized in a space-subspace hierarchy based
on the notion of relative significance and
vicinity of pathways in the navigation world.
The computational advantage of this organi-
zation is that the space-subspace hierarchy di-
rectly provides the goal decomposition of a
path-planning problem, and the neighbor-
hoods in the hierarchy define the problem
spaces corresponding to the subgoals.

Third, if the navigation world is dynamic,
then the adaptive approach to navigational
path planning is faced with the issue of up-
dating the case memory. This might be com-
putationally costly if the case memory is large,
and it might be relatively easier and cheaper to
update the spatial model. But if only the spa-
tial model is updated, then the case-based
method by itself may not be able to validate
the cases retrieved from memory or verify the
candidate plans. Instead, the tasks of case val-
idation and plan verification may require the
capability of model-based spatial simulation.

Fourth, the integration of multiple meth.
ods for solving a given task leads to more ro.
bust reasoning. Given a specific instance of
the task and a specific knowledge condition,
if a particular method is not useful becauge
the knowledge it uses is not available, then
another method can be brought into service
if the needed knowledge is available in the
given situation. However, the mechanism for
integrating the methods itself incurs compu-
tational costs because of the additional pro-
cessing needed for method selection.

Finally, spatial models of the navigation
world play multiple roles in navigational
path planning. For example, in Router, spa-
tial models define the problem spaces to be
searched by the model-based search
method, enable spatial simulation for vali-
dating cases and verifying new plans, and
provide an indexing scheme for organizing
the case memory.
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