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Abstract. Future planetary exploration missions will use cooperative robots to explore and sample rough terrain.
To succeed robots will need to cooperatively acquire and share data. Here a cooperative multi-agent sensing
architecture is presented and applied to the mapping of a cliff surface. This algorithm efficiently repositions the
systems’ sensing agents using an information theoretic approach and fuses sensory information using physical
models to yield a geometrically consistent environment map. This map is then distributed among the agents using
an information based relevant data reduction scheme. Experimental results for cliff face mapping using the JPL
Sample Return Rover (SRR) are presented. The method is shown to significantly improve mapping efficiency over
conventional methods.

Keywords: cooperative robots, visual exploration, information theory, data fusion, robot communication

1. Introduction

To date planetary robots missions have been limited
to moving over rather benign terrain (Schenker, 1998).
These systems are not capable of exploring highly ir-
regular terrain such as cliff surfaces that are potentially
geologically rich and hence very interesting for plane-
tary science (Baumgartner, 1998; Huntsberger, 2000).
To succeed robot teams working cooperatively to ac-
quire and share data have been proposed (Pirjanian,
2001; Schenker, 2001; Sujan, 2002; Trebi-Ollennu,
2002; Huntsberger, 2001). Here an efficient cooper-
ative multi-agent algorithm for the visual exploration
of unknown environments is proposed. This algorithm
repositions the systems’ sensors using an information
theoretic approach and fuses available sensory infor-
mation from the agents using physical models to yield a
geometrically consistent environment map while mini-
mizing the motions of the robots over the hazardous sur-
faces. This map is distributed among the agents using

an information based relevant data reduction scheme.
Thus, the experiences (measurements) of each robot
can become a part of the collective experience of the
multi-agent team.

The algorithm has been applied in this study to a team
of four robots to cooperatively explore a cliff surface.
Figure 1 shows schematically four cooperative robots
working in an unstructured field environment to lower
one robot down a cliff face that is not accessible by
a single robot alone. One robot (Cliff-bot) is lowered
down a cliff face on tethers. Two robots (Anchorbots)
act as anchor points for the tethers. A fourth robot,
RECON-bot (REmote Cliff Observer and Navigator)
provides mobile sensing. All the robots are equipped
with a limited sensor suite, computational power and
communication bandwidths. The Cliff-bot, usually the
lightest system, may be equipped with primarily a sci-
ence sensor suite, and limited sensors for navigation.
The RECON-bot, serves to observe the environment to
be traversed by the Cliff-bot and communicates the data
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Figure 1. Schematic for a cooperative robot cliff descent.
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Figure 2. Sensing limitations due to occlusions.

relevant for navigation to the Cliff-bot. The RECON-
bot has an independently mobile camera and other on-
board sensors to map and observe the environment.
Rocks, outcroppings, other robots, etc. limit sensing
and sensor placement resulting in uncertainties and oc-
clusions (see Fig. 2). There is significant uncertainty
the robots’ locations and poses with respect to the en-
vironment. Due to these limitations and uncertainties it
is difficult or impossible for all robots to independently
measure the environment to control the system.

Environment mapping by mobile robots falls into
the category of Simultaneous Localization and Map-
ping (SLAM). In SLAM a robot is localizing itself as
it maps the environment. Researchers have addressed
this problem for well-structured (indoor) environ-
ments and have obtained important results (Anousaki,

1999; Asada, 1990; Burschka, 1997; Castellanos, 1998;
Choset, 2001; Kruse, 1996; Kuipers, 1991; Leonard,
1991; Thrun, 2000; Tomatis, 2001; Victorino, 2000;
Yamauchi, 1998). These algorithms have been imple-
mented for several different sensing methods, such
as camera vision systems (Castellanos, 1998; Hager,
1997; Park, 1999), laser range sensors (Tomatis, 2001;
Yamauchi, 1998), and ultrasonic sensors (Anousaki,
1999; Choset, 2001; Leonard, 1991). Sensor move-
ment/placement is usually done sequentially (raster
scan type approach), by following topological graphs
or using a variety of greedy algorithms that explore
regions only on the extreme edges of the known en-
vironment (Anousaki, 1999; Choset, 2001; Kuipers,
1991; Leonard, 1991; Rekleitis, 2000; Victorino, 2000;
Yamauchi, 1998). Geometric descriptions of the envi-
ronment is modeled in several ways, including gener-
alized cones, graph models and voronoi diagrams, oc-
cupancy grid models, segment models, vertex models,
convex polygon models (Choset, 2001; Kuipers, 1991).
The focus of these works is accurate mapping. They do
not address mapping efficiency. Researchers have ad-
dressed mapping efficiency to a limited amount (Kruse,
1996). However, sensing and motion uncertainties are
not accounted for. They also generally assume that the
environment is effectively flat (e.g. the floor of an of-
fice or a corridor) and readily traversable (i.e. obstacles
always have a route around them) (Anousaki, 1999;
Thrun, 2000; Choset, 2001; Kuipers, 1991; Lumelsky,
1989; Yamauchi, 1998) and have not been applied to
robot teams working in rough planetary environments.
Also, prior work has not addressed optimizing the com-
munication between agents for both multi-agent plan-
ning and cooperative map-building.
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Figure 3. An architecture for multi-robot cooperative sensing.

To achieve the localization function landmarks and
their relative motions are monitored with respect to
the vision systems. Several localization schemes have
been implemented, including topological methods such
as generalized voronoi graphs and global topological
maps (Choset, 2001; Kuipers, 1991; Tomatis, 2001;
Victorino, 2000), extended Kalman filters (Anousaki,
1999; Leonard, 1991; Park, 1999), and robust av-
erages (Park, 1999). Although novel natural land-
mark selection methods have been proposed (Hager,
1997; Simhon, 1998; Yeh, 1995), most SLAM archi-
tectures rely on identifying landmarks as corners or
edges in the environment (Anousaki, 1999; Kuipers,
1991; Castellanos, 1998; Victorino, 2000; Choset,
2001; Leonard, 1991). This often limits the algo-
rithms to structured indoor-type environments. Others
have used human intervention to identify landmarks
(Thrun, 2000).

This paper presents a cooperative multi-agent algo-
rithm for the visual exploration of an unknown envi-
ronment. The basic approach to the algorithm is shown
in Fig. 3 (Sujan, 2002). This algorithm fuses sensory
information from one or multiple agents using physical
sensor models, robot models, and environment maps to
yield geometrically consistent surrogate information in
lieu of missing data due to the environment, task, robot
and sensor uncertainties. The algorithm falls into the
general category of SLAM. The mapping and localiza-
tion process is as follows. First, each agent efficiently
repositions its sensors using an information theoretic
approach so as to optimally fill in uncertain/unknown
regions of the environment map, based on maximiz-

ing the expected new information obtained. Next, each
agent fuses the data to its known environment model by
localizing itself with respect to a global fixed reference
frame. Finally, each agent shares its known environ-
ment map with its team which is then integrated by
the other agents into their own environment maps. The
information is then used by the control and planning
architecture to plan further movements of the sensors
for each agent. Thus, a common environment map is
built by fusing the data available from the individual
robots, providing improved accuracy and knowledge
of regions not visible by all robots. The algorithm is
unique in that it utilizes the quantity of information of
the environment that it currently has to predict high
information yielding viewpoints from which to con-
tinue exploring the environment. This results in a sig-
nificantly more efficient exploration process. This al-
gorithm is general in that it is directly applicable to
a team of robots as it is to a single explorer. This is
achieved through a unique information sharing and fu-
sion architecture.

In this paper the algorithm is applied to a cliff
surface exploration robot team as described above.
In this application the sensing agent is the JPL
Sample Return Rover (SRR) which optimally sur-
veys the cliff surface and transmits the information
to other agents. Experimental results compare the
Model and Information Theory based Sensing And
Fusion ExploreR (MIT-SAFER) architecture to con-
ventional raster (or sequential) sensing schemes. The
algorithm details are developed and results presented
below.
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Figure 4. Multi robot environment sensing and distribution flow diagram.

2. MIT-SAFER Analytical Development

In general for each sensing agent the algorithm consists
of four steps (See Fig. 4).

Step 1. System initialization: Here the environment map
is initialized, the robots are localized, and a first map is
generated. The environment is mapped to a 2.5D eleva-
tion grid, i.e., the map is a plane of grid cells where each
grid cell value represents the average elevation of the
environment at that cell location. This map is built in
a fixed reference frame defined by a well-known land-
mark measurable by all the sensing agents. All robots
contributing to or requiring use of the map are localized
with respect to the initial map. For the cliff exploration
team, the RECON-bot contributes to and uses the en-

vironment map, while the Cliff-bot only uses the envi-
ronment map. Localization may be achieved by either:

(a) Absolute localization—is achieved by mapping a
common environment landmark that is visible by
all robots or

(b) Relative localization—is done by mapping fidu-
cials on all robots by other robot team members
where one robot is selected as the origin. Relative
localization is used in this application, with the
RECON-bot localizing the Cliff-bot with respect
to itself (the origin—see Fig. 5). Then, each agent
initially senses the environment.

Step2. Critical terrain feature identification: In some
applications, certain regions of the terrain may be
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Figure 5. Initial environment map coordinate frame.

critical, requiring early identification and mapping. An
example is determining regions of safe travel for the
sensing agents.

In this application, identification of the cliff edge
by the RECON-bot is critical. The edge is parameter-
ized by the edge of a best-fit non-convex polygon of
the local terrain. This permits the RECON-bot to move
along the cliff edge without falling over it. In cliff edge
parameterization, the surface currently in contact with
the RECON-bot is identified in the environment model.
This surface is then approximated by a best-fit polygon.
The tolerance of the fit is limited by the known rover
wheel diameter, i.e., fit tolerance = wheel characteris-
tic length/length per pixel. For this process the incom-
plete environment model is temporarily completed by
a Markovian approximation for unknown grid cells.
For all unknown points a worst case initial guess is
assumed. This value is the lowest elevation value cur-
rently in the known model. A nearest measured neigh-
bor average is performed and iterated till convergence.
An example of this is shown in Fig. 6.

Using the Markovian approximation of the envi-
ronment, the current rover contact surface (called the
plateau) is first identified. This is achieved by setting a
height threshold bound to the environment model and
projecting the resulting data set onto the XY plane.
This is followed by a region growing operation around
the current known rover coordinates. Next, the binary
image is smoothed by an image closing operation (di-
lation + erosion). Plateau edge pixels are easily iden-
tified at this stage. However, to remove small holes in
the plateau, an edge following operation is performed.
At this stage we are left with a single closed loop of

boundary pixels. Finally, this set of points is parame-
terized by a closed polygon. This is initiated by fitting
the full set of boundary pixels to a straight line. For any
given sub set of boundary pixels that is currently fit to
a line, if the error bound on this fit exceeds the pre-
scribed tolerance, then the pixel set is divided into two,
and process is repeated. However, before error bound
evaluation, line segments fit to each sub set of boundary
pixels, are joined to form a closed polygon. The cliff
edge parameterization algorithm is outlined in Fig. 7.

An example of the process is shown in Fig. 8 on
a simulated Mars-type environment (note—simulated
environment is based on Viking I/II Mars lander rock
distribution statistics).

Step 3. Optimum information gathering pose selection:
A rating function is used to determine the next location
(position and orientation) of the sensing agent from
which to explore the unknown environment. The objec-
tive is to acquire as much new information about the en-
vironment as possible with every sensing cycle, while
maintaining or improving the map accuracy. Hence,
minimizing the exploration time. The process is con-
strained by selecting goal points that are not occluded
and that can be reached by a collision free feasible
path.

The new information (NI) is equal to the expected
information of the unknown/partially known region
viewed from the sensor pose under consideration.
In the case of the cliff surface exploration applica-
tion, the sensors are CCD stereo cameras. This is
based on the known obstacles from the current en-
vironment map, the field of view of the sensor and
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Figure 6. Markovian interpolation of unknown regions.

a framework for quantifying information. Shannon
showed that the information gained by observing a
specific event among an ensemble of possible events
may be described by the following function (Shannon,

1948):

H (q1, q2, . . . , qn) = −
n∑

k=1

qk log2 qk (1)
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Figure 7. Cliff edge parameterization algorithm flow diagram.

where qk represents the probability of occurrence for
the kth event. This definition of information may also
be interpreted as the minimum number of states (bits)
needed to fully describe a piece of data. Shannon’s
emphasis was in describing the information content

of 1-D signals. In 2-D the gray level histogram of
an ergodic image can be used to define a probability
distribution:

qi = fi/N for i = 1 . . . Ngray (2)
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where fi is the number of pixels in the image with gray
level i , N is the total number of pixels in the image,
and Ngray is the number of possible gray levels. With
this definition, the information of an image for which
all the qi are the same—corresponding to a uniform

Figure 8. Example of cliff edge parameterization.
(Continued on next page.)

gray level distribution or maximum contrast—is a max-
imum. The less uniform the histogram, the lower the
information.

It has been shown that it is possible to extend this
idea of information to a 3-D signal (Sujan, 2002). In this
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Figure 8. (Continued).

paper this idea is extended to a 2.5D signal—
environment elevation map. The new information con-
tent for a given sesnor (camera) view pose is given by:

H
(
camx,y,z,θp,θy

) =
∑

i

nmax
grid − ni

grid

nmax
grid

{(
Pi

V

2
log2

Pi
V

2

)

+
(

1 − Pi
V

2
log2

(
1 − Pi

V

2

))}
(3)

where H is summed over all grid cells, i , visible from
camera pose camx,y,z,θp,θy ; ni

gridis the number of envi-
ronment points measured and mapped to cell i ; nmax

grid is
the maximum allowable mappings to cell i ; and Pi

V is
the probability of visibility of cell i from the camera
test pose.

A single range observation of a point (x̄) is modeled
as a 3-D Gaussian probability distribution centered at
x̄ , based on two important observations. First, the use
of the mean and covariance of a probability distribution
function is a reasonable form to model sensor data and
is a second order linear approximation (Smith, 1986).
This linear approximation corresponds to the use of a
Gaussian (having all higher moments of zero). Second,
from the central limit theorem, the sum of a number of
independent variables has a Gaussian distribution re-
gardless of their individual distributions. The standard

deviations along the three axes of the distribution cor-
respond to estimates of the uncertainty in the range ob-
servation along these axes. These standard deviations
are a function of intrinsic sensor parameters (such as
camera lens shape accuracy) as well as extrinsic sensor
parameters (such as the distance to the observed point
or feature). For most range sensing systems, this model
can be approximated as (Sujan, 2002):

σx,y,z = f (extrinsic parameters, intrinsic parameters)

≈ S · Tx,y,z · Ln (4)

where S is an intrinsic parameter uncertainty constant,
Tx,y,z is an extrinsic parameter uncertainty constant, L
is the distance to the feature/environment point, and n
is a constant (typically 2).

Pi
V is evaluated by computing the likelihood of oc-

clusion of a ray rayx,y,z using the elevation, Obx,y,z ,
and the associated uncertainty, σx,y,z , at all cells lying
along this ray path shot through each position in the
environment grid to the camera center. From Fig. 9, if
grid cell i falls within the camera field of view, then
its average elevation, Ptx,y,z (obtained either as an av-
erage of all measured points mapped to cell i , or as
the Markovian approximation of its neighborhood if
no points have currently been mapped to cell i) traces
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Figure 9. Ray tracing to determine probability of visibility of a grid cell from a given camera configuration.

a ray to the camera center, Camx,y,z. Pi
V is given by:

Pi
V =

∏
�x

{
sgn(rayz − Obz)

·
∫ (rayz−Obz)

0

1

σz

√
2π

exp

(
− z2

2σz

)
dz + 0.5

}
(5)

This definition for NI has an intuitively correct form.
Regions with higher visibility and associated higher
level of unknowns yield a higher expected NI value.
Higher occlusions or better known regions result in
lower expected NI values.

During the mapping process some regions that are
expected to be visible may not be, because of sensor
characteristics (e.g., lack of stereo correspondence due
to poor textures or lighting conditions), and inaccu-
racies in the data model (e.g., expected neighboring
cell elevations and uncertainties—occlusions). How-
ever, after repeated unsuccessful measurements of cells
expected to be visible, it becomes more likely that sen-
sor characteristics are the limitation. This is represented
as a data quality function that reduces as the number
of unsuccessful measurements of the visible cell in-
creases. The probability of visibility of the cell i , Pi

V ,

is pre-multiplied by a “interest function,” I.F., for the
cell i given at the kth unsuccessful measurement by:

I.F.0i = 1
(6)

I.F.ki = 1

eβ Pi
V

· I.F.k−1
i

where β is a scaling constant determined empirically—
larger values result in faster decrease of I.F. Note that
cells with low Pi

V resulting in an unsuccessful measure-
ment are not as severly penalized as cells with high Pi

V .
Hence, occluded regions do not translate to low data
quality regions. This permits future “interest” in such
regions that may be explored later.

Data fusion: A final step in environment map building
is to fuse the newly acquired data by each agent with
the environment model currently available to that agent.
Each agent only fuses its own newly acquired data to
the environment map stored in its memory. Thus as
the environment map develops on an individual agent
level, it needs to be shared and integrated among the
team to keep each agent updated. Optimal map sharing
protocols for multi agent systems is currently work in
progress, i.e., decentralized protocols instructing the
team members when and how to share their individual
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environment maps. However, once an agent shares its
map, the other agents fuse this shared map into their
own environment maps using the same method to fuse
directly measured data, as described below.

Since the environment model has been developed
in a fixed frame (see Step 1), all agents contributing
to the environment map require identification of their
vision system motion with respect to the fixed coordi-
nate frame, i.e., the agents require global localization.
This process eliminates robot positioning errors, such
as camera motion errors, and vehicle suspension mo-
tions, and allows for accurate data fusion from multiple
sources. The process for data fusion is as follows. A
single spatial point in the fixed reference frame, r̄i , is
related to the image point (ui , vi ) in the sensor frame
by the 4 × 4 transformation matrix g01 (see Fig. 10).
Spatial points are selected and tracked based on a
Forstner interest operator and a homography transform
(Huntsberger, 2001).

For motion calibration of a camera g01 needs to be
identified:


ki ui

kivi

ki f

1


 = g01 · r̄i =

[
[R01]3×3 X̄3×1

0̄ 1

]
·




r x
i

r y
i

r z
i

1


 (7)

where R01 is the rotational matrix, X̄ is the transla-
tion vector, f is the camera focal length, and ki is a
scaling constant. For computational reasons it is more
convenient to treat the 9 rotational components of R01

as independent, rather than a transcendental relation
of 3 independent parameters. Each spatial point gives
three algebraic equations, but also introduces a new
variable, ki —multiplicative constant to extend the i th
image point vector (u, v, f )i to the i th spatial point in
the camera coordinate frame. ki may be found from

the disparity pair of the stereo images. For n points we
have:

u = g01r ⇒




k1u1 k2u2 knun

k1v1 k2v2 · · · knvn

k1 f k2 f kn f

1 1 1




= g01




r x
1 r x

2 r x
n

r y
1 r y

2 · · · r y
n

r z
1 r z

2 r z
n

1 1 1


 (8)

This set of linear equations can be readily solved us-
ing conventional techniques. A least mean square error
solution is given by:

g01 = u(rTr)−1rT (9)

The rotation matrix, R01, and the translation vector, X̄ ,
of the camera frame with respect to the base frame are
extracted directly from this solution of g01. However,
for real measured data and associated uncertainty, a
larger number of spatial points are required to more
correctly identify the geometric transformation matrix,
g01. Given the (i + 1)st spatial and image point, from
Eq. (9), Ri+1 and X̄ i+1 can be obtained. A recursive
method is used to determine the mean and covariance
of X̄ and R01 based on the previous i measurements as
follows:

ˆ̄Xi+1 = (i ˆ̄Xi + X̄i+1)

i + 1

C X̄
i+1 = iC X̄

i + [X̄i+1 − ˆ̄Xi+1][X̄i+1 − ˆ̄Xi+1]T

i + 1 (10)

R̂(l,m)
i+1 =

(
iR̂(l,m)

i + R(l,m)
i+1

)
i + 1

CR(l,m)
i+1

= iCR(l,m)
i + [

R(l,m)
i+1 − R̂(l,m)

i+1

][
R(l,m)

i+1 − R̂(l,m)
i+1

]T

i + 1

This essentially maintains a measure on how cer-
tain the camera motion is with respect to its original
configuration (assuming the original configuration is
known very precisely with respect to the common ref-
erence frame). This camera pose uncertainty must be
accounted for to obtain an estimate on the position un-
certainty of a measured point in the environment. Let
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the measurement z̄ be related to the state vector (ac-
tual point position) x̄ by a non-linear function, h(x̄).
The measurement vector is corrupted by a sensor noise
vector v̄ of known covariance matrix, R.

z̄ = h(x̄) + v̄ (11)

Assume that the measurement of the state vector x̄ is
done multiple times. In terms of the current measure-
ment, a Jacobian matrix of the measurement relation-
ship evaluated at the current state estimate is defined
as:

Hk = ∂h(x̄)

∂ x̄

∣∣∣∣
x̄=x̄k

(12)

The state (or positition) may then be estimated as fol-
lows:

Kk = Pk H T
k

[
Hk Pk H T

k + Rk
]−1

ˆ̄xk+1 = ˆ̄xk + Kk[z̄k − h(x̄k)] (13)

Pk+1 = [1 − Kk Hk]Pk

This estimate is known as the Extended Kalman Filter
(Gelb, 1974). Using this updated value for both the
measured point x̄ and the absolute uncertainty P , the
measured point may then be merged with the current
envrionment model.

Provided two observations are drawn from a normal
distribution, the observations can be merged into an im-
proved estimate by multiplying the distributions. Since
the result of multiplying two Gaussian distributions is
another Gaussian distribution, the operation is symmet-
ric, associative, and can be used to combine any number
of distributions in any order. The canonical form of the
Gaussian distribution in n dimensions depends on the
standard distributions, σx,y,z , a covariance matrix (C)
and the mean (x̄) (Stroupe, 2000; Smith, 1986):

p(x̄ ′ | ȳ)

= 1

(2π )n/2
√|C |exp

(
−1

2
(ȳ − x̄ ′)T C−1(ȳ − x̄ ′)

)

where

C =




σ 2
x ρxyσxyσxy ρzxσzxσzx

ρxyσxyσxy σ 2
y ρyzσyzσyz

ρzxσzxσzx ρyzσyzσyz σ 2
z




(14)

where the exponent is called the Mahalanobis distance.
For un-correlated measured data ρ = 0. The formu-
lation in Eq. (14) is in the spatial coordinate frame.
However, all measurements are made in the camera (or
sensor) coordinate frame. This problem is addressed
through a transformation of parameters from the obser-
vation frame to the spatial reference frame as follows:

Ctransformed = R(−θ̄ )T · C · R(−θ̄ ) (15)

where R( θ ) the rotation matrix between the two coor-
dinate frames. The angle of the resulting principal axis
can be obtained from the merged covariance matrix:

Cmerged = C1(I − C1(C1 + C2)−1) (16)

where Ci is the covariance matrix associated with the
i th measurement. Additionally, a translation operation
is applied to the result from Eq. (14), to bring the result
into the spatial reference frame. To contribute to the
probabilistic occupancy environment model, all mea-
sured points corresponding to obstacles are merged.
That is, all measured points falling in a particular grid
cell, contribute to the error analysis associated with that
voxel.

Note that adding noisy measurements leads to a nois-
ier result. For example, the camera pose uncertainty
increases as the number of camera steps increase. With
every new step, the current uncertainty is merged with
the previous uncertainty to get an absolute uncertainty
in camera pose. However, by merging (multiplying) re-
dundant measurements (filtering) leads to a less noisier
result (e.g., the environment point measurements).

In addition to maximizing information acquisition,
it is also desirable to minimize travel distance and
maintain/improve the map accuracy, while being con-
strained to move along feasible paths. A Euclidean met-
ric in configuration space, with individual weights αi

on each degree of freedom of the camera pose c̄, is used
to define the distance moved by the camera:

d =
(

n∑
i=1

αi (ci − c′
i )

2

)1/2

(17)

where c̄ and c̄′ are vectors of the new and current camera
poses respectively. Here αi is set to unity. In general
this parameter reflects the ease/difficulty in moving the
vision system in the respective axis. Map accuracy is
based on the accuracy of localization of each sensing
agent. This may be obtained by adding the localization
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error of the agent along the path to the target. Paths
containing more promising fiducials for localization
result in higher utility in determining both the goal
location and the path to the goal. The new information,
the travel distance and the net improvement of map
accuracy is combined into a single utility function that
may be optimized to select the next view pose.

Step 4. Map distribution: As each agent maps and
fuses an environment section to the environment map,
it needs to distribute this updated map among the other
agents. This is required so that each agent may opti-
mally plan its next move and add information to the
map. Once completed, the environment map needs to
be distributed to the team. For example, to explore the
cliff, after the RECON-bot has developed the geomet-
rical cliff surface map, it needs to transfer this to the
Cliff-bot for task execution (e.g., science instrument
placement) (Huntsberger, 2001; Huntsberger, 2003).

Due to communication bandwidth limitations
of NASA/JPL present and near-term rovers, an
appropriate data transfer algorithm needs to be
developed. For example, during the 1997 Mars
Sojourner mission, both the lander and rover car-
ried 9600 baud radio modems, with an effective
data rate of 2400 bps (http://mars.jpl.nasa.gov/MPF
/rover/faqs sojourner.html). For the 2003 Mars
Exploration Rover (MER) mission the data
transfer rates of MER-to-Earth is expected to
vary from 3 Kbps to 12 Kbps and MER-to-
orbiter is expected to stay constant at 128 Kbps
(http://mars.jpl.nasa.gov/mer/mission/comm data.html
<x-html>). These communication limitations may
be further exacerbated with multiple cooperating
agents. Thus successful communication requires the
reduction of the data set into relevant data, i.e., only
communicate data that is necessary for task execution.

The data reduction algorithm used here breaks down
the environment map into a quadtree of interest regions.
This is achieved by first reducing the entire elevation
map with adaptive decimation. This removes highly in-
significant objects, such as small pebbles. The resulting
data set is divided into four quadrants. The information
content of each quadrant is evaluated using Eqs. (1)
and (2). This information content reflects the amount
of variation in the terrain quadrant (where higher infor-
mation content signifies higher variation in the terrain).
Quadrants with high information content are further di-
vided into sub-quadrants and the evaluation process is
continued. Once it is determined that a quadrant does

Start

Data convolved with low pass filter
(remove high frequency noise)

Quadtree decomposition of compressed data set
(quad divided iif information content of any subquad 

> information content of current quad) 

Base transmission data (BTD) set formed
(a) coordinates of quadtree nodes
(b) value of quadtree node = avg(quad value)

Stop

Transmit data to Cliffbot
(a) wireless handshaking
(b) bit-sum checking 

Conventional compression of BTD 
using lossless  compression algorithm

Data reduced using adaptive decimation
(removes objects insignificant to rover wheel base clearnace)

Lossless data compression
(using predictive compression algorithm)

Figure 11. Inter-robot communication flow diagram.

not require further subdivision, an average elevation
value of the particular quadrant is used for transmis-
sion (rather than the elevation of all grid cells within
that quadrant). This cutoff threshold of information is
based on a critical robot physical parameter (e.g., the
wheel diameter). This results in a significantly reduced
data set known as the quadtree of interest regions. Con-
ventional lossless compression schemes may then be
applied to the reduced data set to further reduce the
number of transmission bits. The flow diagram of this
process is given in Fig. 11.

3. Experimental Results

The basic MIT-SAFER algorithm was applied to the co-
operative exploration of cliff surfaces by a team of four
robots. The JPL Sample Return Rover (SRR) served
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Figure 12. Experimental laboratory setup.

as the RECONbot for this application. The SRR is a
four-wheeled mobile robot with independently steered
wheels and independently controlled shoulder joints.
It carries a stereo pair of cameras mounted on a three
DOF articulated manipulator. The SRR is equipped
with a 266 MHz PC-104 computer platform, operat-
ing with VX-Works. Five mapping techniques, includ-
ing the one developed above, were implemented. These
were: These include:

Method 1. Raster scanning without yaw.
Method 2. Raster scanning with yaw.
Method 3. Information based environment mapping

with cliff edge assumed to be a straight line segment.
Method 4. Information based environment mapping

with cliff edge approximated as a non-convex poly-
gon.

Method 5. Information based environment mapping
with interest function and cliff edge approximated
as a non-convex polygon.

The first two methods reflect commonly used envi-
ronment mapping schemes (Asada, 1990; Burschka,
1997; Castellanos, 1998; Choset, 2001; Kuipers, 1991;
Rekleitis, 2000; Victorino, 2000). The latter three re-
flect with increased complexity the algorithm devel-
oped here.

The experimental setup for the first study in the Plan-
etary Robotics Lab (PRL) at JPL is shown in Fig. 12.
A recessed sandpit containing several rock piles is
mapped. The edge of the sandpit, a vertical drop, acts as
the cliff edge. This limits the motion of the RECON-bot
to lie in the flat plane behind the cliff edge (see Fig. 12).
Figure 13 shows the number of environment grid cells
explored as a function of the number of stereo imag-
ing steps. From this experimental study, the improved
efficiency of the method presented in this paper over
conventional raster scanning methods can be seen, with
an order of magnitude more points being mapped by
Method 5 over those returned from Method 1 for the
same number of stereo imaging steps. A significant im-
provement in efficiency can be seen while progressing
from Method 3 to Method 5. In Method 4, by param-
eterizing the cliff edge, the rover is able to follow the
edge more aggressively, thus covering a larger variety
of view points.

Figure 14 shows a top view of the environment points
mapped using Methods 3 and 5. It is seen that Method 5
takes approximately half the number of steps to map a
qualitatively similar region. Further, it is observed that
the left region of the sandpit in Fig. 12 yields poor data
(due to lack of stereo correspondence). Since this re-
gion is expected have high information content (due to
lack of occlusions), the algorithm in Method 3 tends
to converge to view points looking in that direction.
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Figure 13. Amount of environment explored.

Figure 14. Top view of mapped points.
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Figure 15. Comparison of the number of expected new mapped cells verses the number obtained.

However, in Method 5, the algorithm concludes that
the data quality is poor and eventually loses interest
in this region. This is seen in Fig. 15 that shows the
number of expected environment grid cell measure-
ments as opposed to the number obtained. In Method 5,
there is reasonable agreement. However, in Method 3,
while the expected number of measurements is signif-
icant, the obtained number of grid cell measurements
drops off to zero. Figure 15(c) shows an example of the

projected mapped area as opposed to the true mapped
area. Differences exist primarily due to poor imaging
(stereo correspondence). However, occlusions and in-
accuracies in projected area from local slope variations
also contribute to this difference. Figure 16 shows the
interest function value obtained in Method 5 for each
environment grid cell using Eq. (6). It is seen that re-
gions to the left rapidly lose their interest values with
time since they yield low quality data.
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Figure 16. Interest function value after 10 steps using Method 5.

Figure 17. Experimental field system setup.

Field tests were conducted near the Tujunga Dam
in Tujunga, CA on a natural cliff face with a vertical
slope of ∼75◦. This setup seen in Fig. 17. This is the
physical realization of the conceptual description pro-
vided in Section 1 of a team of four cooperating robots
exploring a cliff surface. Due to time constraints, ex-

perimental tests could only be run for Method 3 using
the maximum information content and Method 5 using
the maximum information content with interest func-
tion. The results of the study for 10 imaging steps are
shown in Fig. 18. Figure 19 shows part of the cliff sur-
face and its corresponding map. Of particular interest
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Figure 18. Amount of environment explored.

Figure 19. Tujunga dam cliff site.

is the rock jumble to the Cliffbot, which may choose
to avoid it during traversal.

Figure 20 compares the number of expected environ-
ment grid cell measurements and the number obtained
for the two methods. Method 5 shows reasonable agree-
ment, while Method 3 results in a large discrepancy.
Once again, differences exist primarily due to poor
imaging (stereo correspondence). However, occlusions

and inaccuracies in projected area from local slope vari-
ations also contribute to this difference. Finally, Fig. 21
shows the interest function value obtained in Method 5
for each environment grid cell using Eq. (6).

These results demonstrate the effectiveness of the
multi-agent environment mapping architecture devel-
oped in this paper. To demonstrate the effectiveness of
the map reduction and distribution algorithm for robots
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Figure 20. Comparison of the number of expected new mapped cells verses the number obtained.

Figure 21. Interest function value after 10 steps using Method 5.

in real Mars field environments, 32 different elevation
maps of fixed dimensions, based on the statistics of
Viking I/II Mars lander data were tested. The data of
each elevation map was reduced with respect to a robot
with varying wheel diameter. To compare the data re-
duction, a terrain variation parameter, dH, is defined
as the terrain elevation variation normalized by the
robot wheel diameter. Thus, it is expected that robots
with smaller wheel diameters (higher dH) require a
greater amount of terrain detail for navigation, than
those with larger wheel diameters for the same terrain
map. Figure 22 confirms this expectation. It shows the

data reduction factor as a function of dH using the algo-
rithm described above (without conventional lossless
compression added at the end). The variation at each
data point represents the variation in data reduction ex-
pected for a given elevation map.

An example of this data reduction process is shown in
Figs. 23–26. It compares the grayscale elevation map
before and after the data reduction process—lighter
regions indicate higher elevations. Figure 23 shows a
contour map of the simulated environment. Figure 24
shows the quad-tree decomposition of the environment.
Note that higher divisions of regions indicate more
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Figure 22. Elevation map data reduction for transmission as a function of terrain elevation range.

Figure 23. Simulated world contour map—gray color code indicates darker regions to be of lower elevation.
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Figure 24. Quadtree decomposition of elevation map.

Figure 25. Quadtree decomposition overlaid on original elevation map.
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Figure 26. The original (left) and the process/transmitted (right) environment elevation maps.

complex terrain and consequently higher relevant in-
formation content. Figure 25 shows the contour map
overlaid on the original grayscale elevation map. Fi-
nally, Fig. 26 compares the elevation map before and
after the data reduction process.

For this example, a data reduction factor of ap-
proximately 10 was achieved with a dH = 8. Al-
though visually the left and right images of Fig. 26
may appear the same, closer inspection reveals re-
gions in the transmitted image (such as the bottom
right corner) to contain very little information con-
tent. This indicates that the region in the original ele-
vation contained insignificant terrain variation with re-
spect to the particular wheel diameter. However, other
regions such as the boulders, indicated in the origi-
nal elevation map, that are critical with respect to the
wheel diameter, are faithfully transmitted. It is seen
that using this method, significant data reduction can be
achieved while maintaining the overall map structure.
Although, this is applied to a 2.5D environment eleva-
tion map here, the algorithm is directly applicable to
3D maps.

4. Conclusions

This paper has presented a cooperative multi-agent dis-
tributed sensing architecture. This algorithm efficiently
repositions the systems’ sensors using an information
theoretic approach and fuses sensory information from
the agents using physical models to yield a geomet-
rically consistent environment map. This map is then

distributed using an information based relevant data re-
duction scheme for communication. The architecture
is proposed for a team of robots cooperatively inter-
acting to explore a cliff face. Experimental results us-
ing the JPL Sample Return Rover (SRR) have been
presented. This single rover acts as a surveyor, opti-
mally generating a map of the cliff face. The method is
shown to significantly improve the environment map-
ping efficiency. The algorithm shows additional map-
ping efficiency improvement when an interest function
is included. This function measures the data quality in
the environment. Future work includes implementation
and testing of the inter-robot communication algorithm
on the experimental platform.
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