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Abstract

Small, tracked mobile robots designed for general ur-
ban mobility have been developed for the purpose of
reconnaissance and/or search and rescue missions in
buildings and cities. Autonomous stair climbing is a
significant capability required for many of these mis-
sions. In this paper we present the design and im-
plementation of a new set of estimation and control
algorithms that increase the speed and effectiveness of
stair climbing. We have developed: (i) a Kalman fil-
ter that fuses visual/laser data with inertial measure-
ments and provides attitude estimates of improved
accuracy at a high rate, and (i) a physics based con-
troller that minimizes the heading error and maxi-
mizes the effective velocity of the vehicle during stair
climbing. FExperimental results using a tracked vehi-
cle validate the improved performance of this control
and estimation scheme over previous approaches.

1 Introduction

As a significant part of many urban reconnaissance
and/or search and rescue mission scenarios, stairs
are formidable and critical obstacles. Being able to
autonomously climb stairs in a fast, efficient, and
robust way could mean the difference between a suc-
cessful mission and an unsuccessful one.

A small, tracked robot (see Fig. 1) designed for gen-
eral urban mobility is used in this research to develop
the algorithms necessary to autonomously navigate
stairs at high speeds.

Previous approaches to autonomous stair climbing
for tracked vehicles are presented in [1], [2] and [3].
In [1], the Andros VI mobile robot relies on a set of
accelerometers to measure its attitude. The authors
assume that the vehicle body accelerations due to
the interaction of the tracks with stairs are insignif-
icant compared to the gravitational acceleration. A
low pass filter is designed for reducing the effect of

Figure 1: Vehicle climbing stairs.

the external disturbances before communicating the
attitude estimates to the track speed controller. A
simple kinematic model is employed for the design
of a proportional control law. The gains and the
bandwidth of the controller are determined experi-
mentally.

In [2], a similar PD controller is implemented which
is also based on the kinematics of the vehicle. The
main contribution of this work is the incorporation
of a variety of sensors for determining the attitude of
the robot: (i) a set of accelerometers that measure
the local projection of the gravitational acceleration,
(ii) a vision-based edge detection sensor module, and
(iii) an array of sonars that measure distances to the
sides of the stairwell. A rule-based arbiter was devel-
oped for deciding when to process information from
each of these sensors. No more than one sensor was
used at the same time.

Finally, in [3] a single forward-looking camera was
used as the basic navigation sensor. Edge detection
algorithms applied to the camera images allowed for
estimation of heading angle, 6, and center position
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Figure 2: Diagram of vehicle.

j—; (see Fig. 2) at approximately 4 Hz. Heading an-

gle and center position were then heuristically com-
bined to regulate the two track speeds to keep the
vehicle heading directly up the stairs while remain-
ing in the center of the staircase. Due to the time
between measurements of 0.25 sec, the top speed
of the vehicle during stair climbing was limited by
this approach. Here, similar to [1] and [2], a sim-
plified kinematics-based proportional controller was
employed for keeping the vehicle perpendicular to the
stair edges. In addition, a separate control law was
implemented for steering the vehicle towards the cen-
ter of the stairwell when approaching its sides. This
work is described in more detail in Section 3.

In this paper we present a set of new estimation and
control algorithms for improving the speed, accu-
racy, and effectiveness of autonomous stair climbing.
Our main motivation has been the introduction of
a new mechanical chassis with enhanced capabilities
in terms of torque and maximum velocity. Specifi-
cally, the new version of the robot has a top speed of
approximately 2.0m/s (on flat ground) compared to
the previous vehicle’s maximum velocity of 0.80m/s.
This increase in speed has resulted in faster dynam-
ics for the vehicle and has amplified the magnitude
of the disturbances. These additional challenges ac-
centuated the deficiencies of the previous approach
and heightened the necessity for a new set of esti-
mation and control algorithms capable of processing
information from a diverse set of sensors and of op-
erating at a significantly higher rate (30 Hz for the
controller compared to 4 Hz previously).

The main contributions of this paper are: (i) the
development of a Kalman filter estimator for opti-
mally fusing all attitude measurements provided by
a variety of sensors, (ii) the implementation and test-
ing, both in simulation and experiment, of a physics
based control law for effectively navigating the robot
up the stairs while preventing collisions with the
sides of the stairwell.

The new stair climbing algorithm can be divided into
five discrete components: (i) a vision-based head-
ing and center position estimator, (ii) a laser-based
heading and center position estimator, (iii) a Kalman
filter to merge the laser/vision data with gyro and
tilt sensor data, (iv) a physics-based heading con-
troller, and (v) a centering controller. These algo-
rithms are described in Sections 3 through 6. Section
7 presents the experimental results from testing these
algorithms on the actual vehicle. We derive our con-
clusions in Section 8 and suggest possible directions
of future work.

2 Hardware Description

2.1 Vehicle

The vehicle used for this research has a mass of ap-
proximately 20kg and overall dimensions of 60 x 50 X
17 e¢m (see Fig. 1). It has three kinematic degrees
of freedom (DOF): two independently controlled mo-
tors turn the main tracks on the sides of the vehicle
as well as the tracks on the arms, and one motor
turns both of the arms about a pivot point at the
front of the vehicle. The tracks are made of molded
rubber and are approximately 7.5cm wide, with 1lem
high cleats oriented perpendicular to the motion of
the track and spaced about 4cm apart.

2.2 Sensors

The sensor suite used for these algorithms includes
the following sensors: 3 gyroscopes, a 2 DOF elec-
trolytic tilt sensor, a pair of cameras, and a LADAR.
Only one of the cameras was used by the edge detec-
tion algorithm described in Section 3.

The gyroscopes are Systron-Donner QRS11 solid-
state gyros with operational ranges of £200°/s. The
tilt sensor is part of a Precision Navigation TCM2-
50 magnetometer and tilt sensor package and has
a range of £50° of roll and pitch. The stereo pair
consists of two Videology 20VC3405 B/W cameras
with frame-grabbers that provide 640 x 480 resolu-
tion. The LADAR is a SICK LMS-200, a single axis
laser scanner with a 180° field of view and a 75 Hz
scan rate. The range of the scanner is calculated us-
ing a pulsed time-of-flight measurement with a 905
nm laser. This sensor is capable of 0.25° sample spac-
ing and in its default mode has a maximum range of
8 meters, 1 mm resolution and +5 mm accuracy.



3 Vision Algorithm

The vision algorithm incorporated in our system es-
timates vehicle heading, 6, and center position, Z—L,
(see Fig. 2). The interested reader is referred to [3]
for a detailed description. Here we summarize its
main features.

The algorithm is divided into two consecutive steps.
The first of these steps is edge detection and linking.
In order to increase robustness to varying conditions,
such as those within shadowy and low contrast envi-
ronments, a low threshold was selected for the edge
detection algorithm. While this choice maximizes
the likelihood of detection of an existing edge, it also
increases the frequency of false positives. Appropri-
ate filtering is introduced to reduce the number of
detected edges. These filters include straight line,
parallel and close, and length filters. Additionally,
linking of small collinear edges that are close to one
another is performed.

The second step is to estimate the heading and center
position from the resulting edges. With the assump-
tion that the vehicle body plane and the stair edge
plane are parallel, there exists a direct mapping from
the edge endpoints in the image frame to the vehicle

heading:
—k
f = arctan | —— 1
<(ym - yo)) ( )

where k is the slope of the 2D stair edge, y,, is the
y-intercept of the edge, and yq is one coordinate of
the projection center of the image plane. A figure
of merit, Gy, is associated with the estimation of

heading:
Ly
G9 _ Zedges (2)
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where Lj, is the horizontal length of each detected
edge and oy is the associated uncertainty approxi-

mated as: )

= (3)

Finally, the ratio of the distances from the left and
right endpoints of the stair edges is calculated with
simple distance equations.

g9

4 Laser Algorithm

Like the vision-based algorithm discussed above, the
laser algorithm produces both a heading measure-
ment and an estimate of how well-centered the robot
is within the stairway. Because the LADAR per-
forms several functions in addition to its stair climb-
ing role, it must be mounted such that the scanning
plane is perpendicular to the robot’s vertical axis.
In this configuration, the LADAR cannot view indi-
vidual steps while climbing. Instead the laser algo-
rithm detects straight line segments which are pre-

sumed to represent solid walls bounding one or more
sides of the stairwell. Some stairways are bounded
by balustrades (vertical posts) which support a hand
railing rather than a solid wall. The current imple-
mentation does not handle this case although such
an enhancement would be straightforward.
The algorithm first uses a robust estimation tech-
nique to find straight line segments within a scan.
Those line segments are then used to compute the
robot’s heading and distances to the walls on each
side.
Each individual scan consists of 361 range mea-
surements obtained at 0.5° intervals in a counter-
clockwise direction. Although the laser is physically
rotating at a 75Hz rate, serial throughput limits the
effective scan rate to approximately 10 Hz. A slid-
ing window determines a subset of the scan’s range
measurements which are then fed into the line-fitting
algorithm. If a line that adequately approximates
that subset is found, the window is extended to in-
clude additional measurements and the line-fitting
algorithm is applied again. This step is iterated upon
until no adequate linear approximation can be iden-
tified. At this point the parameters of the line seg-
ment are recorded, the window is shifted to a point
just past the previous subset, and the same process
is repeated.

Fig. 3 shows a single laser scan obtained during
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Figure 3: An example laser scan captured during
a stair climbing run. The robot is located at the
origin and those range samples which have been de-
termined to be part of the first line segment (in this
case the right-hand wall) are drawn as green circles.
The short solid green and dashed red lines extending
from the origin indicate the laser determined heading
and estimated inertial heading respectively.

a stair-climbing run. The two walls bounding the
stairwell are easily identified. The landing is not
directly seen in the laser data but begins approx-
imately where the left wall ends. The line fitting



itself is based on a random-sampling least median of
squares technique [4]. First, a pair of points from the
data within the sliding window is randomly selected.
The median distance between the line determined by
these two samples and the distance to each of the re-
maining measurements of the data set is then calcu-
lated. If the median error (or alternatively the m-th
largest error) is within a preset threshold, the data
set is determined to be sufficiently approximated by
the line containing the two test points. If the thresh-
old is exceeded, a different pair of points is selected
at random from the data set and the test is repeated.
If, after a predetermined number of attempts, no sat-
isfactory line has been found, the line-fitting portion
of the algorithm returns failure.

The extraction of robot heading from the set of lines
can be made more robust by making the following as-
sumptions: (i) the robot’s heading is always within
the interval [—45°,45°] (where 0° denotes the direc-
tion directly up the stairs) (ii) the visible bounding
walls are either parallel (i.e. the left and right walls)
or perpendicular (the wall at the top of the stairs) to
the stairway. Using the above assumptions the head-
ing of the robot can be calculated from any of the
line segments found within a scan as mod(8.ya1, 7/2),
where 6,,4;; is the direction of the line segment.
Generally, numerous line segments are found within
a single scan due to the presence of non-straight line
portions of the wall and because of the approximate
nature of the line-fitting algorithm. In order to in-
crease estimation accuracy, the measured heading is
calculated as the weighted average (by the line seg-
ment length) of all the identified line segments. The
distances to the left and right walls are computed in
a similar fashion.

5 Kalman Filter Based Attitude Estima-
tion

5.1 Dynamic Model Replacement

In order to estimate the attitude of the robot, we
have implemented a Kalman filter observer. Sensor
modeling was selected instead of dynamic modeling.
The main reasons for this are: (i) dynamic modeling
would have to be redone every time there is a mod-
ification to the robot, (ii) dynamic model-based ob-
servers require a large number of states that increase
the computational needs without producing superior
results [5]. Finally, the convergence of the resulting
estimator does not rely on the availability of a pre-
cise dynamic model. The observability of the system
depends solely on the type of sensor measurements
available to the system.®

IThe interested reader is referred to [6] or [7] for a detailed
discussion on the subject of sensor vs. dynamic modeling.

5.2 Attitude Kinematics and Error State
Propagation Equations

The three-parameter Euler angle representation has
been used in most applications of the Kalman fil-
ter in robot localization [8, 9]. However the kine-
matic equations for Euler angles involve non-linear
and computationally expensive trigonometric func-
tions. The computational cost using quaternions is
less than using Euler angles. It is also more compact
because only four parameters, rather than nine, are
needed. Furthermore, in the Euler angle representa-
tion the angles become undefined for some rotations
(the gimbal lock situation) which causes problems in
Kalman filtering applications [10, 11]. Among all the
representations for finite rotations, only those of four
parameters behave well for arbitrary rotations [12].
The physical counterparts of quaternions are the ro-
tational axis, n, and the rotational angle, 6, that
are used in the Euler theorem regarding finite rota-
tions. Taking the vector part of a quaternion and
normalizing it, we can find the rotational axis, and
from the last parameter we can obtain the angle of
rotation [13]. Following the notation in [14] a unit
quaternion is defined as:

4| _ | nsinf/2
q_{qz;]_{ cos /2 } (4)
with the constraint ¢7¢ = 1, f = [nznynz]T is the
unit vector of the axis of rotation and € is the angle
of rotation.

The rate of change of the quaternion with respect to
time is given by:

L 4(1) = ZE0)alt) )
o 0 —Ww3 W2
0@ =| 4 o] e=| @ o o

where @ = 6 is the rotational velocity vector.
Based on the gyro model in [15] the angular velocity
& is related to the gyro output &, according to the
equation: .
&G =0Gy —b—1, (6)
with
E{ii, ()} =0, E{f,(t)i; (') = N6t —t') (7)

where b is the drift-rate bias and 71, is the drift-rate
noise assumed to be a Gaussian white-noise process.
The drift-rate bias is not a static quantity but is
driven by a second Gaussian white-noise process, the
gyro drift-rate ramp noise:

b= iy 8)



with

Elng ()] =0, Eliw(t)iy(t)) = Nud(t —1'). (9)
These two noise processes are assumed to be uncor-
related (E[f,, (t)7l (t')] = 0).
At this point we present an approximate body-
referenced representation of the error state vector.
The error state includes the bias error and the
quaternion error. The bias error is defined as the
difference between the true and estimated bias.

—

Ab=0b— b (10)

The quaternion error here is not the arithmetic dif-
ference between the true and estimated (as it is for
the bias error) but it is expressed as the quaternion
which must be composed with the estimated quater-
nion in order to obtain the true quaternion. That
is:

Sq=q®q; ' ©q=0q®q (11)

The advantage of this representation is that since the
incremental quaternion corresponds very closely to a
small rotation, the fourth component will be close to
unity and thus the attitude information of interest is
contained in the three vector component dG where

5q ~ [ 51‘7} . (12)

Starting from equations:

d 1=

—q==0(60 1

Za=590)q (13)
and J )

—qi = =Q(0;)q; 14

i = 5900 (14)

where 6 is the true rate of change of the attitude

and 6, is the estimated rate from the measurements
provided by the gyros, it can be shown [7] that

O 67= |G~ BJOT— 5(AF 4 7,)

d
—d0qs =0
dt qa

dt
(15)
Using the infinitesimal angle approximation in Eq.
(4), 64 can be written as

1 -

L .
64 = 500 (16)

and thus Eq. (15) can be rewritten as

d

Eéé‘: |G — b;)06 — (Ab+7i,) (A7)

Differentiating Eq. (10) and making the same as-
sumptions for the true and estimated bias as in Egs.

(6) and (8), the bias error dynamic equation can be
expressed as

d -
—A =n . 1
g b=y (18)

Combining Egs. (17) and (18) we can describe the
error state propagation as

i 549_1 _ - L(Em - g’LJ _I3><3 5: (19)
dt | Ab 03x3 033 Ab
—I3x3 O3x3 iy
+ N
[ O3x3  Isxs } { Ty }

or in a more compact form

d

EAx =FAz+Gn (20)

This last equation describes the system model em-
ployed in the current Kalman filter implementation
[7].

5.3 Measurement Model

This estimator combines the gyroscopes angular
rates with the absolute orientation measurements
from the vision/laser algorithm and the tilt sensor
in order to estimate both the attitude of the vehicle
and the gyro biases. Each of these sensors measures
the projection of a global vector on the sensor’s axes
expressed in the vehicle’s local coordinates. This in-
formation can be used to update the current esti-
mates of the filter. For example, if v, is the unit
vector along the direction of the gravitational accel-
eration then the actual and estimated measurements
are:

z = TICT(q)v, + it
Zi = HCT(qz)go

Where II is the projection matrix, C(q) is the rota-
tional matrix, and 7 is the sensor measurement noise
assumed to be a white-zero mean Gaussian process.
The linearized measurement equation is derived from
the previous relations and it can be shown [7] that
is:

Az=z— 2z =1CT(¢;)|7,)60 + i (21)

Finally, the measurement matrix and the covariance
of the measurement noise are given by:

H=10%(¢;)|v,| , R=0E{ma"0"  (22)

As shown in [6], this estimator acts as a high pass
filter on the gyro signals by filtering out the low
frequency noise component (bias) while weighing
more their contribution during high frequency mo-
tion when the vision/laser algorithm is susceptible to
disturbances. If absolute orientation measurements



are available continuously, the filter is capable of con-
tinuously tracking the gyro biases. In our case atti-
tude updates are available at a lower rate than the
gyro measurements. Therefore the filter updates the
bias estimates only intermittently (Fig. 4) based on
its effect on the attitude estimates during the previ-
ous interval of motion. The resulting attitude esti-
mates are then fed to the control algorithm in order
to determine the appropriate steering commands.
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Figure 4: Bias Estimation (simulation results): The
flat parts of the estimate depict the constant bias as-
sumption in the integrator. The sharp step changes
occur when absolute attitude measurements become

available (at 10 Hz).
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Figure 5: Control system block diagram.

6 Control System

6.1 Overview

There are three main goals of this stair climbing con-
trol algorithm: (i) maximize the time that the vehicle
is heading directly up the stairs, (ii) keep the vehicle

at a safe distance away from the edges of the stair-
case, (iil) accomplish the first two goals while moving
as quickly as possible.

The first goal is necessitated partly by the observa-
tion that the actual stair climbing speed is a non-
linear function of the vehicle heading. If the heading
is perturbed slightly off from zero, track slip increases
dramatically.

Under ideal conditions the first two goals are not
mutually exclusive and a single tiered control system
could be designed that would minimize the heading
error while traveling straight up the stairs. As long
as the vehicle started at the center of the stairs then
it could be expected that it would finish close to the
center of the stairs. Unfortunately, there are signifi-
cant disturbances in this system due to the complex
interactions of the tracks and the stairs. The mag-
nitude of these disturbances increases with the stair
climbing speed therefore control becomes more dif-
ficult when attempting to climb stairs at a higher
rate. The fact that the system state is significantly
affected by these disturbances creates the need for
a two tiered control system. This approach mini-
mizes the heading error while the vehicle is near the
centerline of the stairs. Whenever the vehicle ap-
proaches the side of the staircase, the centering con-
troller steers the robot towards the centerline and
resumes nominal operation as soon as the vehicle is
at a safe distance away from the side of the staircase.
Two state variables are used for control purposes
during stair climbing (see Fig. 2). The first vari-
able is the heading, 6, of the robot expressed in lo-
cal coordinates. This variable is computed based on
the attitude estimation from the Kalman filter (Sec-
tion 5). The second variable is a normalized distance
from the center of the stairs, g—;. This variable is ob-
tained directly from the vision or the laser algorithm
described above.

Two different control schemes are implemented for
each of these state variables. For the heading, a
model-based control loop is designed. For the cen-
tering, a step function with hysteresis is used. Both
of these schemes are described below; see Fig. 5 for a
system block diagram. In order to reduce the control
variable to a single input, a constant linear velocity
input is assumed.

Vehicle
Dynamics

W
e Motor
Controller

Figure 6: Motor subsystem block diagram.




6.2 Heading Control

Model. An approximate dynamic vehicle system
model based on first principles is developed in order
to design a heading controller for use during stair
climbing. This model-based approach is selected be-
cause most of the developed systematic tools for the
design and analysis of feedback controllers rely on the
existence of a dynamic model. This is also important
since it allows for the characterization of the inher-
ent instability of the vehicle during open-loop stair
climbing. This instability results from the fact that
the center of rotation is below the center of gravity
of the vehicle (see Fig. 2), creating a classic inverted
pendulum control problem. A detailed description
of modeling techniques for tracked vehicles is pre-
sented in [16] and [17]. Here we have approximated
the dynamics of the tracked vehicle climbing stairs as
a first order linear system. This approximation does
not invalidate the model, it simply limits its range of
application. The main advantage of this linearized
model is that it increases the number of formal con-
trol system design techniques available when design-
ing the heading controller.

The model consists of two motor subsystems (see Fig.
6) and a vehicle dynamics model.

Each motor controller is modeled as a PD controller,

kp + kgs (23)
and each motor is modeled as a first order system,

km
Ts+1°

(24)

As can be determined from the open-loop step re-
sponse of the motor, its rise time is approximately
7 = 20ms. This is extremely fast compared to the
dynamics of the vehicle, thus a kinematic relation-
ship between the rotation velocity error of the mo-
tOr, Wim_err = Wm_des — Wm, and motor torque, T,,,
closely approximates the motor controller dynamics.
This relationship can be expressed as

Tm = kmcwm_e'rr (25)

where k. is defined as the motor controller gain.
By applying the Final Value Theorem to Eq. (23), it
can be shown that k,,. = k,. The rotational velocity
of the vehicle, wyepn, the track velocity, Viqcr, the
torque about the point O, T, and the force exerted
by each track, Fi.qck, are given by:

wper, = (VL —VR)/b (26)
Virack = WmTs/Nyg (27)
To = (b/2)(FL — FRr) (28)
Firack = Tm(ng/rs) (29)

where the subscript track can mean either L or R
depending on the side being referred to, V; and Vg
are left and right track velocities, respectively, b is
the distance between the tracks, w,, is the angular
velocity of the corresponding motor, r, is radius of
the sprocket that drives the track, and ng is the gear
ratio between the motor and the sprocket. Substi-
tuting in Egs. (28) and (29) the error equations cor-
responding to Eqgs. (26) and (27) the relationship
between wy.p, and Tp, is:

TO = kvehwveh_err = kveh (wveh_des - wveh) (30)

where
kyen = (kmc/Q)(b ng/rs)Q- (31)

The vehicle dynamics are modeled as
Woenl, =To + mgdcg sinasinf — M, (32)

where w,ep, is the rotational acceleration, I, is the
moment of inertia, m is the mass, g is gravitational
acceleration, dog is the longitudinal distance from
the center of gravity to point O, 6 is the heading, M,.
is the turning resistance, and « is the inclination of
the staircase. Replacing kg.q for mgdcg sin o, and
invoking the small angle approximation for sin 8, this
model can be written in standard state-space form:

&1 _ 0 1 x1
iy | = kg;:“ = 7

0 0

+ |: M, :| + |: Kyen :| Wyeh_des (33)
I, I,

where x1 is 0 and 5 IS Wyep-

Most of these parameters, such as dcg, s, and ng,

are easily measured or are known parameters of the

vehicle. M, is calculated as:
M, = uW/2L (34)

where W is the weight of the vehicle, L is the
contact length of the tracks, and p is the coefficient
of lateral resistance estimated from experimental
data in [18]. I, is computed by weighing individual
subcomponents of the vehicle and measuring their
location relative to the CG.

Controller Design. Once the state-space model
shown in Eq. (33) is developed, many techniques
can be employed to design the controller. The de-
sign technique selected for this application is a pole
placement method. This approach has the advan-
tage of being able to explicitly specify the resulting
dynamics of the controlled system within the con-
straints of the actuators [19].

Eq. (33) is compactly written as:



The result of this design is a control law expressed
as:
u=—-K= (36)

where, 4 = wyen_des 1S the control input, Z is the
state vector, A, B, and C are system matrices, and
K is a vector of controller gains.

A few modifications to Eq. (35) are required before
applying the pole placement design method. The
first of these is to discretize it. The discretization
rate is chosen to be equal to the control rate, which
is specified to be 30 Hz. Based on simulations of
the model this rate is determined to be fast enough
to react to the dynamics of the vehicle while slow
enough to place reasonable computational demands
on the system. The discretized form of Eq. (35) is:

Z(k+1) = ®Z(k) + 5 + Tu(k) (37)

where ®, 3, and I are the discrete system matrices.
The second modification is the augmentation of the
state with an integral term. This is to eliminate any
steady state error that may occur in the system. The
third modification is to add a reference signal to the
equation to allow for the centering control to affect
the system when rendered necessary. The result of
these last two modifications is

] - |
Fhk+1) |
Jr

|

where x7 is the integral state variable, kj is its gain,
and r(k) is the reference signal computed by the cen-
tering controller.

The design of the heading controller affects several
aspects of the system. The first obvious effect is on
the dynamics of the resulting system in terms of sta-
bility, response speed, and damping. A secondary
consideration, contradictory to the first, is the mini-
mization of the energy expended during stair climb-
ing. A balance of these two is achieved by selecting
a damped system on the order of ( = 0.7 without
affecting the natural frequency of the system signif-
icantly. The effect of the controller design on the
response of the system can be iterated upon both in
simulation and experimentation to refine the design.

—
+

| —
=3

|
A

o

] r(k) (38)

6.3 Centering Control

The input to the centering controller, as mentioned
above, is the ratio fil—L. The output of this controller
is used as the reference signal for the heading con-

troller (see Fig. 2).

Compared to the heading controller, a much sim-
pler approach to centering control is employed. Stair
climbing experiments with this vehicle indicate that
the optimal heading is § = 0 and that the effective-
ness of tracks on stairs quickly decreases as a non-
linear function of heading. The physics of this can
be explained by the fact that nearly all of the force
transmitted between the tracks and the stairs dur-
ing stair climbing occurs when a track cleat slides
against a stair edge. With each of the tracks gener-
ally spanning three stair edges, this situation takes
place almost continuously when the vehicle is facing
directly up the stairs, and never when the vehicle is
facing slightly angled to the stairs.

This fact dictated our approach to centering con-
trol. Since the only significantly negative impact of
not going up the center of the stairs is the threat of
interactions with the side of the staircase, there is
generally a region in the center of the stairs that can
be considered homogeneously safe. In this region the
centering controller sends a reference signal of zero
to the heading controller. When fil—g reaches a mini-
mum or maximum threshold, the centering controller
modifies the reference signal of the heading controller
to steer the vehicle towards the center of the stair-
case. To avoid oscillations of the reference signal
around these threshold values a hysteresis function
is selected, so that the thresholds have different val-
ues depending on the direction the center position,
g—;, approaches these from.

7 Experimental Results

Experiments were conducted on the bottom floor
staircase in building 198 at the Jet Propulsion Labo-
ratory. Each step has a height of 15 cm and a depth
of 30 cm providing a slope of 30deg. The stairwell
has a width of 150 cm, which leaves approximately
50 cm of clearance on each side of the robot as it
climbs the stairs. All four sides of the stairwell are
made of drywall.

The vehicle was initially placed in front of the stairs
and was commanded to begin climbing. Then it
would deploy its arms to a forward position that al-
lowed it to climb the first step. At this point, the
robot would start the control algorithm described in
the paper to autonomously navigate the stairs. After
traveling a distance on the stairs the arms would de-
ploy to a flat configuration to maximize the traction
of the treads on the stairs. The robot would continue
climbing until it reached the top of the stairs, which
it would detect by the leveling of the tilt sensors, and
stop. There are three parameters that quantify the
improvement of stair climbing performance: effective
velocity, Vesyr, root mean square of heading, Orass,
and root mean square of the normalized center po-



sition, (ln( L))rums. Note that Veyy is the length of
the staircase divided by the time of ascent, not the
commanded speed of the vehicle.
Table 1 shows the comparison of these three param-
eters averaged over multiple experiments using the
previous algorithm [3] and the new algorithm pre-
sented in this paper. These results indicate that the
new algorithm has doubled the effective stair climb-
ing velocity while improving the root mean square of
the heading by 8% and the root mean square of the
normalized center position by 31%.

Figs. 8 7 and present the results from example stair

Table 1: Comparison of previous and new algo-
rithms.
Prev. Algorithm | New Algorithm
Vesr(em/sec) 24 43
GRMS( ) 8.5 7.2
(ln( ))RMS’ 0.93 0.64

climbing trials using the previous algorithm and the
new algorithm. These plots are not representative of
the entire data set (primarily due to significant vari-
ability between different trials), but they do reflect
the differences in performance of the algorithms.

In contrast, as shown in Fig. 8, the heading in the
previous algorithm oscillates widely. This is due to
the constant modification of the reference heading
based on the center position. In addition, the large
variations in both heading and center position are
the result of not considering the dynamics of the ve-
hicle in the controller design.
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Figure 7: Heading and center position of stair
climbing run using the new algorithm.

8 Conclusions

This research was mainly motivated by the improve-
ment of the mechanical ability of a tracked urban ve-
hicle to climb stairs. In order to fully realize the stair
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Figure 8: Heading and center position of stair
climbing run using the old algorithm.

climbing capabilities of the new robot, improvements
to the previously implemented stair climbing algo-
rithm [3] were necessary. We have described the de-
sign and implementation issues pertinent to a set of
new estimation and control algorithms that enhance
the stair climbing capabilities of the robot. Exper-
imental results have validated the improvement in
speed and effectiveness of the new stair climbing al-
gorithms compared to [3].

As part of our future work we intend to extend these
algorithms to control the behavior of the vehicle dur-
ing two separate phases: right before and after land-
ing. Currently the velocity of the robot at the top of
the stairwell is not reduced, resulting in an abrupt
landing. Finally, after the vehicle has landed, it has
to search for the beginning of the new flight of stairs
and align itself towards this. We believe that our
new estimation and control algorithms will signifi-
cantly impact the speed and accuracy of these tasks.
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