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Abstract

This paper presents a new velocity blending approach to

the problem of task space trajectory generation� To com�

pare this technique with others� a generalized formulation

for task space trajectory blending is also developed� It is

shown that task space velocity blending provides a substan�

tial simpli�cation in both representation and computational

complexity over previously proposed methods� While some

residual orientation error is incurred by mathematical ap�

proximations� it is analytically shown that this error is small

and a correction method is provided� Finally� examples are

given� our real�time implementation is described� and im�

plementational considerations are addressed�

� Introduction

Just as manipulator control can be e�ectively accomplished
in joint space or task space� trajectories for the manipula�
tor can also be speci�ed in joint or task space� Typically�
the trajectory is speci�ed in the same space in which the
controller is working� However� conversion techniques can
be used to translated the speci�ed trajectory to the control
space� For instance� inverse kinematics applied to a task
space trajectory will provide setpoints to a joint space con�
troller� Since task space trajectory speci�cation is usually
considered most useful �especially with task space control��
the converse translation of a joint space trajectory to task
space is uncommon�

Joint space trajectory generation is straightforward since
each joint may be treated independently ��� 	� 
�� Typi�
cally� motion between speci�ed joint values is dictated with a
third� fourth� or �fth order polynomial� Some extension and
optimization of this technique have been proposed ��� 	
��

Task space trajectory generation has been addressed
more extensively� because of the complexity inherent in it�
Whitney proposed Resolved Rate control �	�� to easily en�
able straight line motion or constant axis rotation of an end
e�ector� However� this technique does not inherently ad�
dress extended trajectory generation considerations� Fore�
most among these is the problem of blending changes in
end e�ector orientation� Paul ��� 	�� proposed blending of
the Euler angles describing the relations of the initial and
�nal frames to the intermediate one� This method blends
one orientation to the next� but the path generated is not
intuitively obvious� Worse� he proposes changing one Euler

angle with a di�erent blend pro�le from the others� Alterna�
tively� Canny ��� utilizes quaternions to describe orientation�
However� since he was adressing a di�erent problem �colli�
sion detection�� he does not discuss the issues of blending
the quaternions� Craig �
� utilizes the similar angle�axis for�
mulation� but represents the orientation of each via frame
with respect to the world frame� not the previous frame as
Paul had done� Thus� the blend of orientation parameters
will produce a motion path that is dependent on the relation
of the via frames to the world frame� not just their relation
to each other� Finally� Lloyd and Hayward ��� developed an
elegant method for creating variable position blend paths�
but do not show an extension of the method for orientations�

As will be seen� Taylor �	
� has proposed a scheme that
provides smooth� intuitive� and repeatable position and ori�
entation blends� Its major drawback is computational com�
plexity� This paper presents a velocity based method that
achieves the same results with a simpler formulation and
signi�cantly reduced computation time�

The next section presents the terminology employed for
the solution description� Section 
 presents the proposed
velocity blending formulation and describes possible blend
pro�le functions� Section 
 quickly discusses position path
blending� Orientation blending is extensively discussed in
Section �� where Taylor�s method is reviewed� angular ve�
locity blending is presented� and the second order di�er�
ence between them is analyzed� Finally� Sections � and �
discuss implementational considerations and computational
costs associated with the algorithms and show why velocity
blending is preferable�

� Velocity Blending Terminology

A task frame is de�ned as the set containing the rotation
matrix that speci�es the end e�ector orientation� R� the
end e�ector position� p� other scalar con�guration control
parameters �eg� arm angle� � �	���� and the transit time to
this arm pose� T � Thus�

F i � fRi�pi� �i� Tig �	�

Typically the end e�ector orientation is speci�ed by a rota�
tion matrix composed of the vectors de�ning the end e�ector
orientation with respect to the stationary world frame ����

Ri �
�
nTi �o

T
i �a

T
i

�
���

	



To specify a frame� rotation matrix� or vector with respect to
another frame� the former is proceeded with a superscript�
For instance� a frame� rotation� or vector with respect to the
world frame is denoted by wF�wR�wp�

In between two sequential frames� the desired linear ve�
locity of the end e�ector is simply the di�erence in position
over time�

vi �
�p

�t
�
pi � pi��

Ti
�
�

The angular velocity is obtained from the equivalent angle�
axis formulation for a rotation from one frame to another �
��

�i � ki �i�Ti �
�

ki sin�i � �

�
�ni�� � ni � oi�� � oi � ai�� � ai� ���

cos�i � �

�
�ni�� � ni � oi�� � oi � ai�� � ai � 	����

where motion at velocity � for time t causes a rotation of�

R���t� � R�k� �� ��
kxkxV� �C� kxkyV� � kzS� kxkzV� � kyS�
kxkyV� � kzS� kykyV� � C� kykzV� � kxS�
kxkzV� � kyS� kykzV� � kxS� kzkzV� � C�

�
���

with S� � sin �� C� � cos�� and V� � 	� cos��
Finally� the velocity associated with scalar components is

calculated as in Equation �
�� Therefore� the frame velocity
may be de�ned as�

v � �v� �� ��� ���

� Segment Velocity Blending

To move smoothly from one segment to another� the veloc�
ities of the segments must be blended together� To achieve
this� many strategies have been suggested ��� 	
� �� 	
� �� ���
We will review these within a framework that utilizes the
following convention�

va � vi ���

vb � vi�� �	��

s �
t� �ti � ��

��
�		�

ti �

iX
j��

Tj �	��

where �� is the blend period� dependent on the maximum
allowed acceleration� as will be shown below� This implies
that the normalized time parameter s � ��� 	��

To smoothly blend from va to vb over the interval s�
we employ a normalized blending function f ��s� � ��� 	��
Utilizing this function� the velocity pro�le during the blend
is�

v � va�	� f ��s�� � vbf
��s� �	
�

� va � �vb � va�f
��s� �	
�

and the acceleration is�

a � �vb � va�
df ��s�

dt
�	��

� �vb � va�
df ��s�

ds

	

��
�	��

Note that this formulation ensures zero acceleration for va �
vb� Also� there is spatial symmetry of the path for the case
of jvaj � jvbj� because the acceleration vector is parallel to
the di�erence of the two velocity vectors� and will therefore
bisect them�

If the maximum allowed acceleration is speci�ed� then
the blend period may be determined�

�� �
�vb � va�

jajmax

df ��s�

ds

����
s� �

�

�	��

assuming that the derivative of f ��s� is a symmetric function
with a maximum value at s � ����

There are several simple choices available for blend func�
tions� These are provided below� along with the resultant
form of the velocity� acceleration� and blend time�

Linear Velocity Blending �	
�

f ��s� � s �	��

a �
vb � va

��
�	��

�� �
jvb � vaj

jajmax

����

Third Order Polynomial Velocity Blending ��� ��

f ��s� � ��s� � 
s� ��	�

a �
�vb � va�

��
���s� � �s� ����

�� �
jvb � vaj

jajmax




�
��
�

Cycloidal Velocity Blending ���

f ��s� � sin� �
�
s ��
�

a �
�vb � va�

��

�

�
sin �s ����

�� �
jvb � vaj

jajmax

�

�
����

The cyclcoid has a functional form very close to that of the
O�
� polynomial� but does not have a discontinuous jerk

�the derivative of the acceleration�� In turn� the O�
� poly�
nomial is superior to the linear form since the latter has
discontinuous acceleration �and in�nite jerk�� The strength
of the linear form is that it requires the least time since the
acceleration is applied constantly at the maximum value al�
lowed� Finally� note that many other functions are possible�
in particular� all odd order polynomials�

Figures 	 show the blend speed versus time for a spec�
trum of angles ���
�����	
��	�� deg� between the initial and
�nal velocity vectors for the case of jvaj � jvbj� jajmax �
	� m�s�� Figure 	�a� shows the speeds for linear velocity
blending� Figure 	�b� shows the speeds for third order poly�
nomial blending� The pro�les for cycloidal blending are ex�
tremely close to those shown in �b�� The cusp in the plot
for 	�� degrees is due to a change in direction� and does not



�a	 Linear �b	 O��	 Polynomial
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Figure �� These graphs show the blend speed for a spec�
trum of angles ���
�����	
��	�� deg� between the initial and
�nal velocities� for the case of jvaj � jvbj� See the text for
a discussion�

�a	 jvaj 
 jvbj�va � vb �b	 jvaj �
 jvbj�vakvb
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Figure �� These graphs provide a comparison of linear�
third order polynomial� and cycloidal velocity blends� Fig�
ure �a� shows a transition between two velocities of equal
magnitude at an angle of 	
� deg� Figure �b� shows a tran�
sition between two velocities of unequal magnitude�

indicate a discontinuity in the acceleration� Also note that
when the initial and �nal velocities are equal the speed is
constant across the blend�

Figures � show a comparison of linear� third order
polynomial� and cycloidal velocity blends� with jajmax �
	� m�s�� Figure ��a� shows the blend speed for a transi�
tion between two velocities of equal magnitude at an angle
of 	
� degrees� Figure ��b� shows a transition between two
velocities of unequal magnitude� In this �gure� the initial
velocity is zero� however the transition curve has the same
shape for two non�zero parallel velocities� Further� Equa�
tion �	
� shows that this form of the blending occurs for
each component of the resultant velocity vector�

� Blending the Position Trajectory

The blend of the end e�ector position �p� is described by
direct integration of Equation �
�� �Scalar quantities are
handled in the same way�� This yields�

p �

Z
v�s�dt � ��

Z
v�s�ds ����

� po � va��s� �vb � va���

Z
f ��s�ds ����

�a	 Spatial path �b	 Temporal path
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Figure �� These graphs show the spatial and temporal
paths for a transition va � vb and jvaj � jvbj� with jajmax �
	� m�s��

� po � va��s� �vb � va���f�s� ����

where po is the initial position as the blend is entered� The
form of the integral of the blend function determines the
spatial form traced by the path� For the three blend func�
tions considered� we have�

Linear � f�s� � �

�
s� �
��

O�
� Polynomial � f�s� � � �

�
s� � s� �
	�

Cycloidal � f�s� � s
�
� �

��
sin �s �
��

Equation �
�� provides a second order polynomial� and
the blend is parabolic� Equation �
	� provides a fourth order
polynomial� and the blend that is more steep �Higher order
even polynomial functions will be increasingly steeper�� The
cycloidal blend path remains sinusoidal� but has the addi�
tion of a linear term�

Figures 
 show the spatial and temporal paths for a tran�
sition between va and vb� such that va � vb� jvaj � jvbj�
with jajmax � 	� m�s�� It is apparent from Figure 
�a�
that tighter cornering can be accomplished with polyno�
mial and cycloidal blending� However� this requires longer
blend times �or larger acceleration� and therefore greater
joint torques from the actuators�� Figure 
�b� shows the
positions as a function of time� which are essentially the
integrals of the velocities shown in Figure ��b�� The form
of these curves also represents the functional form of the
position blend functions� Equations �
����
���

� Blending the Orientation

Blending of the orientation is more complicated than posi�
tion� since the angular velocities are nonholonomic� How�
ever� this section shows that a close approximation to an�
alytic orientation blending can be obtained� This requires
numeric integration of the rotations obtained from the in�
stantaneous value of the blended angular velocity�

��� Rotation Matrix Blending for Orientation

In reference �	
� Taylor proposed a method of blending ori�
entation based on rotation matrices� A generalization of
this method will be presented here� In this method� the
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Figure �� Graphical depiction of the blending described by
Equation �

�� See the text for a description�

amount of rotation contributed by each rotation matrix is
scaled with the previously presented blend functions�

wR�s� � wRo
oRa ��a���s� f�s���aRb ��b��f�s���

�

� wRo
oR�

�R� �

�

Figure 
 provides a graphical depiction of this blending
method� Prior to the blend there is motion away from the
orientation of the previous frame� Fi��� and toward the in�
termediate orientation� a � Fi� The constant angular veloc�
ity before the blend is �a� and the blend begins at orienta�
tion o� In this method� for each interval after o a rotation
is constructed and applied according to the rotation ma�
trix blending described by Equation �

� or �

�� After the
normalized blend time s has become unity� the commanded
angular velocity will be �b� and the commanded orientation
is b� After this time� the trajectory continues toward the
next target frame� Fi � 	� at the constant angular velocity
of �b� To avoid faceted motion through the blend� the nor�
malized time must be incremented in in�nitesimal intervals�

In reference �	
�� the formulation of this blending scheme
is presented with respect to frame Fa� not F o� This al�
ternate representation can be seen by starting with Equa�
tion �

�� and utilizing the identity�

wRo
oR� � wRa

aRo
oR� �
��

� wRa
aRo��a� �

oR� �
��

� wRa
oRa���a� �

oR� �
��

we have�

wR�s� � wRo
oRa ��a���s� f�s���aRb ��b��f�s�� �
��

� wRa
oRa ���a� �

oRa ��a���s � f�s��� aRb ��b��f�s���
��

� wRa
oRa

�
�a���s� f�s�� �

�
�
�
aRb ��b��f�s�� �
��

Further� reference �	
� only considers the linear blend case
with f�s� � �

�
s�� This gives�

wR�s� � wRa
oRa

�
��a��	� s��

�
aRb

�
�b�s

�
�

�
	�

Substituting Equations �
�� �		�� and �	�� yields�

wR�t� � wRa
oRa

�
ka��

�� � �t� ta��
�


�Ta
�a

�
�

oRa

�
kb�

�� � �t � ta��
�


�Tb
�b

�
�
��

�a	 Spatial path of frames�

�b	 Angular velocity vectors�
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Figure �� The spatial transition of the target frame and
angular velocity vector� during an orientation blend utilizing
Equation �

� with linear blending�

This is the form of the rotation blend presented in �	
��
Figures � provides a graphical depiction of change in the

target frame �a� and the direction of the angular velocity
vector �b�� �A constant spatial velocity has also be used� to
spread out the vectors for pictorial clarity�� Figure � shows
the change in the target frame basis vector n components
under this transformation�

��� Incremental Rotation Blend Components

It is informative to look at the rotations that represent the
individual incremental rotation between successive time in�
crements when utilizing Equation �

�� Consider the di�er�
ence between successive frames depicted in Figure ���� The
incremental rotation between successive orientations is�

wR�� � wR�
�R�� �

�

�R�� � wR��

�
wR�� �

�

� �R��

�
oR��

�
wR��

o
wRo

oR��

��

R�� �
��

� �R��

�
oR��

�
oR��

��

R�� �
��
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Figure �� The component values of the unit vector n of
the frame in in Figure ��a��
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Figure �� Graphical depiction of the incremental blending
described by Equation �

�� See the text for a description�
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where � is the in�nitesimal rotation operator �
�� This re�
sult indicates each incremental rotation of Taylor�s scheme
is equal� to �rst order� to the rotation provided by the in�
stantaneous angular velocity� This implies that it is possible
to blend the angular velocities utilizing Equation �	
�� and
obtain the incremental rotations from the value of the in�
stantaneous angular velocity�

��� Angular Velocity Blending for Orientation

As was discussed in the last section� the incremental rota�
tions of an orientation blend may be approximated by uti�
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Figure �� Graphical depiction of the blending described by
Equation ��
�� See the text for a description�

lizing the instantaneous angular velocity provided by Equa�
tion �	
�� Thus� the orientation of the target frame can be
computed by utilizing Equations �	�� �
�� ���� ���� and �	
��

wR�sm� �
wRo

mY
n��

nR ���sn��s� sn � n�N� �s � 	�N

��
�
where N is the total number of steps for the complete blend�
Figure � provides a graphical depiction of this blending
method� Before the blend� there is motion away from the
orientation of the previous frame� Fi��� and toward the in�
termediate orientation� a � Fi� The constant angular ve�
locity before the blend is �a� The blend begins at orienta�
tion o� For each interval after o� a rotation is constructed
and applied according to the angular velocity blending pro�
vided by Equation �	
�� After the normalized blend time s
has become unity� the commanded angular velocity will be
�b� Ideally� the blend will be complete at the desired ori�
entation� b� where the trajectory continues toward the next
target frame� Fi � 	�

In practice� velocity�based blending can provide com�
parable blends to the rotation matrix method described
previously� Figures � show the spatial transition of the
angular velocity vector and the components of n utiliz�
ing third order polynomial angular velocity blending with
jajmax � 	� m�s�� A constant linear velocity is also utilized
to spread out the origins of the frames for clarity� Compar�
ing Figures � with Figures ��b� and � shows that there is
little di�erence between blending schemes� even when using
di�erent blending pro�les�

��� Compensation for Second Order Error

from Angular Velocity Blending

Looking closely at Figure ��b� it can be seen that there is
some small residual error in the �rst and second components
of n �they should both be zero�� This error results from the
second order error introduced by the in�nitesimal rotation
approximation in Section ���� This can be understood by
considering how the angular velocity blending e�ects the
rotation blending� Consider �rst the case of total completion
of rotation by �a� before rotation by �b begins� In this case�
the resulting rotation is exact�

oRb �
oRa��a� �

aRb��b� � ����



�a	 Angular velocity vectors�

�b	 n components�
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Figure �� The spatial transition of the angular velocity
vector and the changes in the components of n� during an
orientation blend utilizing Equation ��
� and third order
polynomial blending�
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a � � �
oRN��
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oRN
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b � � �
aRN��

b
aRN

b

����

where the rotations oRa and aRb have been divided into
N parts� Blending the angular velocities is equivalent to
changing the order of some of the rotations at the center of
this chain� For instance� utilizing the in�nitesimal rotation
approximation �
��

oRb
��

oR�
a � � � oRN��

a

�
� � o�a

N
� �

� � a�b
�
�
aR�

b � � �
aRN

b

����

��
oR�

a � � � oRN��
a

�
� � a�b

�
� �

�� o�a
N
�
aR�

b � � �
aRN

b

����

This commutation of the in�nitesimal rotations may be con�
tinued until the proper sequence is attained� However� sec�
ond order errors arise from the initial approximation of
R �� �� � �� and from the disregard of the commutator

�the di�erence between the sequence of the rotations��

��� �A��� �B� � ��A�B � ��B�A ����

The lack of these second order terms explains the small error
introduced by angular velocity based orientation blending�

The change in position of oRa
i and aRb

j operators in
the sequence is reminiscent of di�usion� As the oRa

i �dif�
fuse� farther to the right� and the aRb

j �di�use� farther to
the left� the changed in orientation becomes more blended�
Since the in�nitesimal rotations can be represented by their
angular velocity equivalents� the di�usion pro�le is equiva�
lent to the velocity blend pro�le� For instance� the shape of
the cycloidal blend pro�le in Figure ��b� indicates more dif�
fusion than the linear one� Further smaller values of jajmax

also imply more di�usion� since they spread out these curves�
More di�usion introduces second order error� Therefore� lin�
ear blends and high acceleration blends result in less residual
error for a given value of jajmax� However� linear blends will
result in more error if the blend time is �xed instead of the
acceleration� This can be understood by lessening the slope
of the linear blend line in Figure ��b�� thus introducing more
di�usion�

To provide some quantitative description to this discus�
sion� the following table shows the magnitude of the orien�
tation error for the example previously considered�

blend type jajmax � 	� jajmax � �
linear ����� 	�	��

O�
� polynomial ��
�� 	����

cycloidal ��
	� 	����

It is apparent that these errors are small and may be cor�
rected �as described below�� Substantially larger errors are
not possible since they would require much smaller accel�
erations which require longer blend times� Too large of a
blend time multiplied by �a or �b would indicate a rota�
tion greater than 	��� in the initial or �nal legs� Such large
rotations have been precluded by Equation ����

While this small error introduced by one blend does not
necessarily require compensation� the summation of this er�
ror over successive blends may become signi�cant� To com�
pensate for the residual error� we propose the use of a cor�
rection term which is calculated at the end of every velocity
based blend of orientation� This term is the incremental ro�
tation from the resultant frame to the desired frame at the
end of the orientation blend�

R�kcor � �cor� � �wRa
aRb��a� ��

�� wR�sN � 	� ����

In practice� kcor and �cor can be easily calculated by Equa�
tions ��� and ���� A correction velocity may then be calcu�
lated and applied to the leg of the trajectory being entered�
for the time speci�ed to the next via frame�

�cor � kcor�cor��Ti�� � �i� ��	�

This correction term is directly added to the angular velocity
�b� Since it is very small in magnitude� concerns about
changing the value of �b have been ignored�



� Implementation Considerations

��� Maximum Acceleration

Since the calculated trajectories are to be executed by real
manipulators� the commanded acceleration must be limited
to what is achievable� Further� the achievable task space
acceleration of the arm depends on the con�guration of the
robot arm� In di�erent parts of the workspace� di�erent task
space accelerations are possible� Therefore� two possibilities
exist� 	�� limit all task space accelerations to the worst case
acceleration of the arm� or ��� create a complete map of the
achievable task space accelerations� and limit the trajectory
blending accordingly� For now we have chosen to work with
the �rst� and simpler� of these two options�

Another consequence of limited acceleration is that it
erodes the straight line leg segments of the trajectory be�
tween via frames� For a small enough acceleration� one blend
will end as another begins� For accelerations smaller than
this� one blend would have to begin before another ends� We
do not permit this to occur� In this case� the acceleration is
increased to the value needed for concatenated blending� If
the increased level of acceleration is not achievable by the
arm� then the via frames are not reasonably selected�

��� Minimum Blend Time

Due to the discrete nature of the computer implementation
of these algorithms� it is necessary to specify a minimum
number of iterations over which an acceleration is speci�ed�
From Equation �	�� this quantity is the minimum allowed
value of �� � If a minimum is not speci�ed� the calculated
blend time may become comparable to the algorithm cycle
time� Thus� the calculated velocity and position will be dis�
continuous� providing poor input to the arm controller� We
have empirically determined and utilized a minimum value
of twenty iterations per blend� A direct consequence of this
speci�cation of ��min is that the maximum allowed acceler�
ation is also limited� If more acceleration is desired� and the
manipulator is capable of it� then ��min should be reduced�
However� to keep the same number of iterations ber blend�
the algorithm rate must be increased proportionally�

��� Velocity Summation

To be able to modify commanded trajectories with other
control inputs� the commanded variable must be a velocity
�a generalized �ow variable�� not a position �		�� Figure 	�
shows our implementation� The trajectory generator is sub�
ject to modi�cation by the input of a joystick or a proximity
sensor monitor process�

Utilizing the velocity blending scheme proposed in this
paper� velocity output is obtained directly� Alternatively� if
analytic integration of position is used �as in Equation ������
or if rotation matrix orientation blending is used �as in
Equation �

�� then the velocity must be obtained by dif�
ferencing the reference frames� As will be seen in the next
section� this is computationally costly�

trajectory
generator

joystick

   proximity
sensor control

  forward
kinematics

    Robotics 
Research Arm1/s 1/s+

-

+

+
+ xm

xrxr

d m

mθ

.

J

 J-1 K p

Figure �	� Block diagram of our experimental implemen�
tation of the proposed velocity based trajectory blending�

Algorithm Step Eqns Ops

Common
v�t 
 framedif�F �� F �	 
 D�	 ���� � ��� �
F � 
 frameinc�F ��v�t	 
 I�	 ��
� ��� ��� �
calc f�s	 or f ��s	 �
� ��� �� variable
v� 
 vecscale�v� � func	 
 S�	 � ���
a � jajmax� � � �min �� variable
Position � Orientation Blending Method
blend

calc f�s	 ��� ��� �� variable
v� 
 S �va� s � f�s		 �� �
v� 
 S �vb� f�s		 �� �
Fa 
 I�F o�v��t	 �� ����
F b 
 I�Fa�v��t	 �� ����
v 
 D�F o� F b	��tob ���� � ��� �

leg
F �t	 
 I �F i� fp�t	�k��t	� ��t	g	 ��
� ��� ����
v 
 D �F �t	�F �t��t		 ��t ���� � ��� �

transition
vb 
 D�F i� F i��	�Ti�� ����� ��� �
a � jajmax� � � �min �� variable

Velocity Blending Method
blend

calc f ��s	 ��� �
� �� variable
v 
 S �va� �� f ��s		 �
 �
v �
 S �vb� f

��s		 �
 �
leg

nothing� constant v 
 va ���
transition
vb 
 D�F i� F i��	�Ti�� ���� � ��� �
F �

b 
 I�F i�vb�i	 ��� �� ��� �
vb �
 D�F b� F

�

b
	��Ti�� � �i	 ��� �� ��� �

a � jajmax� � � �min �� variable

Figure ��� Algorithm description and comparison� Under
the operations column� the values are the number of stan�
dard math operations ��� ��� and the number of trigono�
metric and other math operations �sin�cos�sqrt�etc���

� Computational Costs

Table 		 provides an outline of the computational steps and
costs for both forms of blending� The equations involved in
each step are also summarized� Finally� an estimate of the
computational complexity is given by stating the number
of additions� subtractions� multiplies� and divides required�
as well as the trigonometric �and square root� operations
needed�

The top section of the table reviews some common steps
needed for both schemes� Of these� the frame di�erencing



and frame incrementing are very costly� The calculation
of f�s� or f ��s� is variable since it depends on the blend
functions chosen�

The second and third sections of the table show the algo�
rithmic di�erences between the position�orientation blend�
ing and the velocity blending methods� The most strik�
ing di�erence between the two formulations is the reduced
computational cost of the velocity blending method� Dur�
ing a blend it requires only 	� operations� while the posi�
tion�orientation method requires ��
 operations plus eight
costly trig or square root calls� The situation is much the
same during the straight line leg segments of the trajectory�
where the velocity based scheme requires zero operations�
while a completely position based scheme requires 	�� plus
�� The e�ciency of the velocity based scheme is paid for
by the overhead necessary during the transition from blend
to leg segments� At this juncture� the velocity scheme must
make ��� plus � operations� while the position�orientation
scheme requires only �� plus �� However� this savings oc�
curs only once for each via frame� compared to the hundred
or thousands of iterations that occur for the blend or leg
segment computations� Obviously� velocity blending intro�
duces a signi�cant computational savings�

It is important to note that some of the computational
advantage of velocity blending is introduced by the assump�
tion that the output of a trajectory generator must be a
velocity� The position�orientation scheme must utilize a ve�
locity calculation step during the blend and leg segments
which costs �� plus � operations� However� even without
this step the velocity blending method is signi�cantly faster�
Further� it was shown in the last section why velocity output
is necessary�

One other computational burden is introduced to the po�
sition�orientation method by the assumption that position�
�p�k�� ��� is speci�ed as a function of time during the leg
segment� Alternatively� the leg segment velocity could be
precomputed and utilized directly as in the velocity blend
method� Since k is constant during the leg segment� no er�
rors would be introduced� Also� the leg velocity must be
computed anyway if the maximum acceleration checks are
to be performed �as is assumed��

� Conclusion

This paper has presented a new formulation of trajectory
generation based on velocity blending� First� a new for�
mulation for trajectory blending was provided� allowing for
the direct comparison and utilization of numerous blend
functions� Second� a generalized version of the previously
proposed orientation matrix blending formulation was re�
viewed� Third� it was shown how a �rst order approximation
of this scheme leads directly to angular velocity blending
for orientation change� Fourth� the residual error incurred
was explained� quantized� and compensated� Finally� the
implementational considerations such as acceleration lim�
its� velocity summation requirements� algorithm computa�
tion rates and complexity were discussed at length� It was
shown that the speed and simplicity of the velocity�blending

formulation enable its ease of use in real�time manipulator
control� As proof of this� we have implemented it on an
Iris workstation for simulation� and on a VME based �����
microprocessor for control of a � DOF Robotics Research
Arm�
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