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Abstract

A robust internal force-based impedance control scheme for coordinating manipulators is introduced. Internal force-

based impedance control enforces a relationship between the velocity of each manipulator and the internal force on the

manipulated objects and requires no knowledge of the object dynamic model. Each manipulator's nonlinear dynamics

is compensated by a robust auxiliary controller which is insensitive to robot-model uncertainty. The controller is only

weakly-dependent on each manipulator's inertia matrix. The scheme is computationally inexpensive and suitable for

general-purpose microcomputer implementation. Stability of the system is analyzed including the e�ects of computa-

tional delays on both a single-arm manipulator in contact with a rigid surface and a dual-arm system manipulating a

rigid object. We show that the inertia matrix has a lower bound with respect to the estimated manipulator Cartesian

end-point inertia which is independent of the sampling period. Rigorous experimental investigations are performed and

the results presented which validate the proposed concepts.
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I. Introduction

Multiple robots performing tasks together in a coordinated manner can have a signi�cant advantage over a single

robot when executing tasks such as material transport of heavy items, assembly of manufactured items, space-based

manipulation, etc. Controllers for coordinating multiple robots proposed during recent years may be generally classi�ed

as position/force control [1], [2], [3] or impedance control [4], [5], [6], [7], [8]. In position/force control the extra degrees

of freedom of the multiple arm system are used to control internal force. The required joint torques are the sum of

torques from the position and force control loops. Impedance control has generally been implemented by adding an

admittance/compliance loop around the position controller to regulate the contact force. It has been shown that the

gain of the admittance function must be limited to assure stability [9].

In [10] the theory of an internal force-based impedance control scheme was proposed which enforces a relationship

between the velocity of each manipulator and the internal force on the manipulated objects. It has the advantage that

kinematic relationships are used to compute the internal force and no knowledge of the object's dynamics is required.

Furthermore, because the impedance function is directly implemented, the gain restriction cited previously does not
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apply. The scheme does, however, require the dynamic model of each manipulator which may not be known exactly in

practice.

The performance of [10] and other model-based schemes are critically dependent on knowledge of the manipulator

dynamics. For a system of multiple coordinating manipulators handling a rigid object, model uncertainty is more

signi�cant than for a single manipulator operating in free space due the fact that position tracking errors can cause

signi�cant internal forces in the system. Actuator limits may be exceeded and damage to the manipulators or the object

may occur. Thus, the practicality and performance of [10] and other similar schemes is critically dependent on the ability

to deal with dynamic model uncertainty. In [11] robust Cartesian-based control schemes which require only minimal

knowledge of the manipulator dynamic model were presented based on the robust joint-control schemes developed in

[12], [13]. The nonlinear dynamics of each manipulator are compensated by a computationally simple robust auxiliary

controller which has a time-invariant and time-delayed structure. In this paper the control schemes presented in [10]

and [11] are integrated together to form a robust controller for multiple coordinating robots.

In practice the control laws will be implemented digitally. Computational delays can a�ect the stability of the system

and will generally place bounds on the values of the controller parameters. Digital implementations of sti�ness and

damping control were examined for a single manipulator by Whitney in [14] which showed a tradeo� between bandwidth

and the sti�ness of the environment. In [15] Colgate showed that computational delays can exacerbate contact instability

problems caused by noncolocation of sensors and actuators and that positive force feedback has a stabilizing e�ect. In

[10] the e�ects of computational delays on internal-force based impedance control was analyzed and we showed that the

controller inertia matrix has a lower bound with respect to the actual Cartesian endpoint inertia of the manipulator. In

this paper we extend the analysis to a robust version of the controller presented in [10].

The purpose of this paper is to propose a solution to the robot model uncertainty problem, analyze the stability of

the proposed controller including the e�ects of computational delays, and to perform a rigorous experimental study to

test the practicality and performance of the proposed control scheme.

II. Robust Controller

A. Control Law Derivation

Consider the system of n robots handling a rigid object (or multiple objects in contact with each other) as shown in

Figure 1. Each manipulator grasps the object rigidly and, thus, may exert both a force and a moment on the object.

The dynamic equation for each manipulator is given by [10]:

�i = Di(qi)�qi + Ei(qi; _qi) + JTi (qi)
~fi (1)

where �i = joint torque vector of the ith robot

Di = inertia matrix of the ith robot

Ei = Coriolis, centripetal, friction and gravity

vector of the ith robot

Ji = Jacobian of the ith robot

qi = joint position vector of the ith robot

~fi = [fTi mT
i ]

T = force and moment exerted

by the ith robot end e�ector.
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Fig. 1. n-Manipulator System

Let �Di be a constant diagonal matrix for each manipulator [13]. The determination of �Di will be discussed later. The

preceding robot model is reformulated as

�i = �Di�qi +Hi(qi; _qi; �qi) (2)

where

Hi(qi; _qi; �qi) = Ei(qi; _qi) + JTi (qi)
~fi + [Di(qi)� �Di]�qi: (3)

The �rst term on the right-hand side of (2) is linear. The second term, Hi, contains all of the nonlinear dynamics of the

manipulator including Coriolis, centrifugal, gravity, and friction forces along with the nonlinear con�guration-dependent

acceleration dynamics and externally applied forces.

If we choose the control input, �i, for the ith manipulator to be

�i = �Diui +Hi(qi; _qi; �qi); (4)

then substituting (4) into (2) yields the double integrator system at each joint

�qi = ui (5)

where ui becomes the joint-level control input to be designed for the ith manipulator.

At this point, the computation of the control torque, �i, involves two terms - �Diui, which is simple to compute,

and Hi(qi; _qi; �qi), which is quite complicated to compute and subject to uncertainty. The next step is to simplify the

computation of Hi(qi; _qi; �qi). For convenience we drop the dependence of Hi(qi; _qi; �qi) on qi, _qi and �qi.

The control torque is modi�ed to be

�i = �Diui + cHi (6)

where cHi is an estimate of Hi. The problem is now reduced to developing a method of computing cHi.
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First, we rearrange (2) which yields

Hi = �i � �Di�qi: (7)

If we assume that Hi(t), the value of Hi at time t, is very close to the slightly time-delayed value, Hi(t��), where �

is small, then Hi(t) can be approximated by Hi(t��). Using the preceding equation, we then get a simpli�ed method

to compute Ĥi(t):

cHi(t) = Hi(t��) = �i(t��) � �Di�qi(t��): (8)

Since (8) does not involveDi(qi) and Ei(qi; _qi), it is robust with respect to robot model uncertainty. Equation (8) also

does not include JTi (qi)
~fi and, thus, it is robust with respect to the e�ects of the object dynamics (or payload) which

are accounted for by JTi (qi)
~fi. The ideal result is obtained when � is zero. In practice, � is chosen as the sampling

period. cHi requires joint acceleration measurements, �qi, which are typically not available in practice. However, in many

industrial robots the joint motor angular positions are measured by high-resolution optical encoders and it is feasible

to compute �qi using �nite di�erence algorithms. This technique introduces some noise [16], but has been successfully

implemented [12].

Up to this point the control input, ui, is a joint-level control input. To transform to Cartesian space we use the

following relationships

_xi = Ji(qi) _qi (9)

�qi = J
�1
i (qi)[�xi � _Ji(qi; _qi) _qi] (10)

to get

ui = J
�1
i (qi)(�i � _Ji(qi; _qi) _qi) (11)

which results in

�xi = �i: (12)

�i is the Cartesian-space control to be designed for the ith manipulator and _xi and �xi are the Cartesian velocity and

acceleration, respectively.

As in [10], we design the control input, �i, by giving the properties of the following impedance to each manipulator

where internal force is used in the relationship:

Mi��xi + Bi� _xi +Ki�xi = � ~fIi: (13)

Mi, Bi, and Ki are the desired inertia, damping, and sti�ness matrices for the ith manipulator, �xi = xid � x, and

� ~fIi = ~fIi � ~fIid. The subscript d denotes a desired quantity. The internal force, ~fIi, is computed as in [17]:

~fIi = PIi ~f (14)

where PIi are the 6i-5 through 6i rows of PI and

PI = I6n �
1

n

2
6666664

I6 J
�T
o1 JTo2 � � � J

�T
o1 JTon

J
�T
o2 JTo1 I6 � � � J

�T
o2 JTon

...
...

. . .
...

J�Ton JTo1 J�Ton JTo2 � � � I6

3
7777775
: (15)

Each object-to-ith-manipulator Jacobian transpose is given by

JToi =

2
6666664

I3 O32
6664

0 piz �piy

�piz 0 pix

piy �pix 0

3
7775 I3

3
7777775

(16)

where pi = [pix piy piz]
T is the vector from the ith end e�ector to the object frame as shown in Figure 1.
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The desired internal force must be chosen to lie in the range of the internal force projection operator, PI , which is

rank 6n-6 [10]. That is, ~fId = [ ~fTI1d
~fTI2d : : :

~fTInd]
T = BI� where BI is a basis for PI and � is a (6n-6)x1 vector

which parameterizes the desired internal force. For example, for n=2 a basis for PI is

BI =

2
4�J�To1

J
�T
o2

3
5 : (17)

Then � represents the internal force as seen at the object frame and the desired internal force at the end e�ectors is

~fI1d = �J�To1 � and ~fI2d = J
�T
o2 �.

Solving (13) for �xi and substituting into (12) yields the following Cartesian-space control input:

�i = �xid +M
�1
i (Bi� _xi +Ki�xi � � ~fIi): (18)

Finally, combining (6), (11) and (18), we get the following robust internal force-based impedance control law:

�i = �DifJ
�1
i [M�1

i (Mi�xid +Bi� _xi +Ki�xi � � ~fIi)� _Ji _qi]g+ cHi: (19)

cHi compensates for both the manipulator and object dynamics and, thus, the control law (19) is robust with respect to

payload variations in addition to robot model uncertainty. Furthermore, since internal force is used in the impedance

relationship, the object dynamics do not contribute to tracking and steady-state position errors. The controller is

depicted in Figure 2.
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B. Stability Analysis

The stability of control systems using the estimate cHi was studied for joint-space and unconstrained Cartesian-space

control schemes in [13], [11]. The stability analysis in [13] relies on some reasonable assumptions of the continuity of the

manipulator dynamics and de�nes a representation of the estimation error of Hi(t) by cHi(t) for the ith manipulator

to be

�i(t) = �D�1i [Hi(t��) �Hi(t)]: (20)

Combining (4), (6), (8), (11), (18), and the preceding equation, yields the closed-loop system error equation:

Mi��xi + Bi� _xi +Ki�xi = �fIi �MiJi�i: (21)

When �i = 0 (i.e., �= 0), so does MiJi�i since MiJi is bounded. This is equivalent to having an exact dynamic

model and exactly canceling the nonlinear dynamics as in a computed-torque control law which was previously shown

to be stable for rigid grasping if each Mi, Bi, and Ki is symmetric positive de�nite and each robot's Jacobian, Ji, is

nonsingular [10].

When �i 6=0, MiJi�i can be considered an additional forcing function and the system (21) will have bounded-input

bounded-output (BIBO) stability if �i is bounded since MiJi is bounded. It was shown in [13] that

�i(t) = [I �D
�1
i (t) �Di]�i(t��) + Ri(t; �) (22)

where Ri(t; �) is a continuous function of the ith manipulator dynamics and is bounded. The unforced part of the

preceding equation is �i(t) = [I �D
�1
i (t) �Di]�i(t� �) which, for digital implementation, can be approximated by

�i(k) = [I �D
�1
i (k) �Di]�i(k�1) (23)

where k is the sample instant.

The system (23) is asymptotically stable if the eigenvalues of [I � D
�1
i (k) �Di] lie within the unit circle on the

z -plane. In [13] it was shown that the condition is met if �Di is chosen as �Di = �iI where �i is a scaler constant

and 0 < �i < 2�i where �i is the minimum eigenvalue of the actual manipulator inertia matrix, Di(qi). Thus,

0 < �i < 2�i is a necessary condition for stability, but there may be other conditions since �i is a function of q, _q, and

the control signal and, thus, it is not independent of the left-hand side of (21). Extensive simulations in [13] indicate

that it is a primary stability condition.

C. The Design of �Di

The control law (19) requires the design of �Di for each manipulator. In [13] it was shown that if 0 < �i < 2�i is

met under no load conditions, it will also be satis�ed with added payload. Furthermore, a method to experimentally

determine �i was presented so that one can determine �Di in the absence of a robot model.

Examination of I � D
�1
i (k) �Di reveals that the closer �Di is to the actual manipulator inertia, Di, the closer the

poles of I �D
�1
i (k) �Di are to the z -plane origin and the faster the convergence of �(k) to zero, or cHi to Hi. Thus, if

one does have knowledge of the manipulator inertia matrix, it behooves one to choose �Di close to Di. For example, the

PUMA 560 manipulator is highly geared and its inertia matrix is diagonally dominant and from [18] one could choose

�Di = diagf2 :57 6 :79 1 :16 0 :2 0 :19 0 :18g to achieve faster convergence than �Di = �iI.

III. Computational Delays

A. Single Manipulator

Before analyzing in detail the e�ects of computational delays on the multi-arm system, their e�ects are examined for

a single impedance-controlled manipulator with its environment in which the control law is implemented digitally. We
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will assume that the manipulator motion is completely constrained. One may question the validity of examining such a

restrictive situation, but the analysis may be applied to the case of the manipulator in contact with a rigid surface. Once

the manipulator breaks contact, then the manipulator is operating in free space and the impedance law is equivalent to

PD control. While in contact with a completely rigid surface, the analysis of this section applies.

During single-arm operation, the control law becomes

� = �DfJ�1[M�1(M �xd +B� _x+K�x� � ~f)� _J _q]g+ cH: (24)

where � ~fI has been replaced by the total force error � ~f . During unconstrained operation, there is no environment to

impose a force on the end e�ector and, therefore, � ~f = 0.

The e�ect of computational delays on the constrained single-arm impedance controlled manipulator is stated as the

following theorem:

Theorem 1: A constrained manipulator employing a digital implementation of control law (24) is exponentially stable

if: 1) J is non-singular, 2) M is chosen such that the magnitude of each of the eigenvalues of I6 � J�T �DJ�1M�1 is

less than one, and 3) �x = 0.

Proof. The last condition does not a�ect the stability results because if it is not met, then the only e�ect is to add a

constant amount, K�x, to the desired force. It is added as a condition to simplify the analysis. Substituting the control

law (24) into the dynamic equation for the manipulator (2), yields

�D�q +H = �DfJ�1[M�1(M �xd +B� _x+K�x� � ~f)� _J _q]g+ cH (25)

In the constrained case, the manipulator is not moving and, thus, _q = �q = �x = � _x = �xd = 0 and D; E; and J are

constant. Equation (25) reduces to

JT ~f = � �DJ�1M�1� ~f + JT ~f: (26)

For the digital case, it is observed that when the left side of equation (26) is at sample instant k+1, the right side

(the control input) is at sample instant k due to the one-sample delay inherent in the digital controller. Equation (26)

becomes the following discrete-time equation:

JT ~fk+1 = � �DJ�1M�1� ~fk + JT ~fk (27)

which results in

~fk+1 = (I6 � J�T �DJ�1M�1) ~fk + J�T �DJ�1M�1 ~fdk = �cl
~fk + � ~fdk: (28)

Equation (28) describes the dynamics of the constrained manipulator system. The stability of the discrete system (28)

is determined by the eigenvalues of �cl. The system is exponentially stable if M is chosen such that the eigenvalues

of �cl are all less than one in magnitude. Equation (28) also requires that J be non-singular. Thus, the necessity for

condition 1. 2

The term J�T �DJ�1 is the estimated approximate Cartesian inertia of the manipulator as seen at the end e�ector.

Theorem 1 places a bound on how much smaller the desired inertia, M , can be relative to the estimated Cartesian

end-point inertia of the manipulator. The bound is independent of the sample time. This independence is an artifact of

assuming that the manipulator is completely rigid and constrained.

B. Dual-arm System

In a dual-arm system, each manipulator interacts with the object and the other manipulator and its motion is

constrained by kinematic relationships. To determine the e�ect of computational delays, we will assume that the

manipulators and the object are completely constrained. This is analogous to having the held object in contact with a
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rigid surface. Although not the most general case, it does yield insight into the control of internal forces in the system.

Without this assumption the problem is less mathematically tractable. While the analysis is not directly applicable to

the unconstrained case, the results have been conservative in simulations studies and should yield su�cient conditions

for stability for the unconstrained system.

The e�ect of computational delays on the constrained dual-arm system is stated as the following theorem:

Theorem 2: A constrained dual-arm system where each manipulator rigidly grasps the other and where each manipula-

tor employs a digital implementation of control law (19) is BIBO stable if: 1) each Ji is non-singular, 2) eachMi, is chosen

such that the magnitude of each of the eigenvalues of
�
I6�

1
2
JTo1J

�T
1

�D1J
�1
1 M

�1
1 J

�T
o1 � 1

2
JTo2J

�T
2

�D2J
�1
2 M

�1
2 J

�T
o2

�
is less than one, and 3) �xi = 0 for i=1,2.

Proof. As in the single arm case, the last condition does not a�ect the stability results because if it is not met, then

the only e�ect is to add a constant amount, Ki�xi, to the desired internal force. It is added as a condition to simplify

the analysis. Substituting the control law (19) into the dynamic equation for the ith manipulator (2), yields

�Di�qi +Hi = �DifJ
�1
i [M�1

i (Mi�xid +Bi� _xi +Ki�xi � � ~fIi)� _Ji _qi]g+ cHi: (29)

In the constrained case, the manipulators are not moving and, thus, _qi = �qi = �xi = � _xi = �xid = 0 and

Di; Ei; and Ji are constant. The preceding equation reduces to

JT
i
~fi = � �DiJ

�1
i M

�1
i � ~fIi + JT

i
~fi: (30)

For the digital case, it is observed that when the left side of equation (30) is at sample instant k+1, the right side

(the control input) is at sample instant k due to the one sample delay inherent in the digital controller. Equation (30)

becomes the following discrete-time equation:

JTi
~fi(k+) = � �DiJ

�1
i M

�1
i � ~fIik + JTi

~fik (31)

which results in

~fi(k+1) = ~fik � J
�T
i

�DiJ
�1
i M

�1
i

~fIik + J
�T
i

�DiJ
�1
i J

�1
i

~fIidk: (32)

Using the de�nition of internal force from (14), we get

~fI1k =
1

2
( ~f1k � J

�T
o1 JTo2

~f2k) and

~fI2k =
1

2
( ~f2k � J

�T
o2 JT

o1
~f1k): (33)

Substituting (33) into (32) yields2
4 ~f1(k+1)

~f2(k+1)

3
5 =

2
4 I6 �

1
2
J
�T
1

�D1J
�1
1 M

�1
1

1
2
J
�T
1

�D1J
�1
1 M

�1
1 J

�T
o1 JTo2

1
2
J
�T
2

�D2J
�1
2 M

�1
2 J

�T
o2 JTo1 I6 �

1
2
J
�T
2

�D2J
�1
2 M

�1
2

3
5
2
4 ~f1k

~f2k

3
5

+

2
4 J

�T
1

�D1J
�1
1 M

�1
1

�J�T2
�D2J

�1
2 M

�1
2 J

�T
o2 JT

o1

3
5 ~fI1dk (34)

or

~fk+1 = A ~fk +

2
4B1

B2

3
5 ~fI1dk = A ~fk +B ~fI1dk: (35)

Using the PBH rank test [19], we �nd that the system (A;B) is not completely reachable. We use the following

transformation to decompose the system (A;B) into its reachable and unreachable parts:

T =

2
42(I6 � J

�T
o1 JTo2�

�1B
�1
1 )J�To1 J

�T
o1 JTo2�

�1

�2��1B�11 J
�T
o1 ��1

3
5 (36)

where � = B
�1
1 J

�T
o1 JTo2 �B

�1
2 . The transformed system matrices and state vector are
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Â = T�1AT =

2
4Â11 Â12

Â21 Â22

3
5 =

2
4I6 � 1

2
JTo1B1J

�T
o1 + 1

2
JTo2B2J

�T
o1 06

06 I6

3
5 (37)

B̂ = T�1B =

2
4B̂1

B̂2

3
5 =

2
41
2
JTo1B1 �

1
2
JTo2B2

06

3
5 (38)

f̂k = T�1 ~fk =

2
4f̂1k
f̂2k

3
5 =

2
4 JTo1

~fI1k

B
�1
1

~f1k �B
�1
2

~f2k

3
5 : (39)

The reachable part of the state, f̂1k, is the internal force exerted by manipulator 1 at the origin of the object frame. It

is characterized by

f̂1(k+1) = Â11f̂1k + B̂1
~fI1dk: (40)

The unreachable part is described by f̂2(k+1) = f̂2k.

The stability of the reachable part is governed by the eigenvalues of Â11. If its eigenvalues are less than one in

magnitude, the reachable part is asymptotically stable. The unreachable part has all its eigenvalues equal to one and,

therefore, is stable in the sense of Lyapunov, but not asymptotically stable. The LTI system (Â; B̂) or (A;B) is BIBO

stable ifM1 andM2 are chosen such that the eigenvalues of the reachable part are less than one in magnitude. Equation

(40) also requires that Ji be non-singular. Thus, the necessity for condition 1. 2

Theorem 2 places a lower bound on the size of Mi with respect to each manipulator's estimated Cartesian end-

point inertia which is independent of the sample time (again, an artifact of the rigidity and constraint assumptions).

The unreachable part represents the sum of the forces exerted by both manipulators as if each had inertia, Mi. The

unreachable part of the system (Â; B̂) is an expression of the principle that we cannot simultaneously control both the

position of and the net force on the object. In control law (19) we control the position of the object and the internal

force which is the reachable part.

IV. Experimental Setup

The UCD Robotics Research Laboratory (RRL) experimental testbed consists of two PUMA 560 industrial manip-

ulators �tted with JR3 wrist force sensors. Each manipulator is controlled by a UCD RRL-designed controller (Figure

3) consisting of: 1) a 486 personal computer; 2) electronics (located in the 486 or Multibus chassis) to read the voltages

from the joint potentiometers, to read each joint's digital encoder signals, and to output control signals to the Unimate

motor voltage ampli�ers; 3) a force sensor interface card; 4) a TMS320C30/C40 DSP board; and 5) a GPIB interface

board.

The UCD controller software (Figure 4) which provides the capability for real-time control of the PUMA manipulators

consists of: 1) a controller device driver which provides the interrupt service routine and communicates with the

hardware, the GPIB driver and the DSP board; 2) a GPIB device driver which provides inter-PC communications; 3)

a DSP control program which does most of the control algorithm computations; and 4) applications programs which

provide the operator interface.

The philosophy behind operation in the dual-arm mode is that the control functions should be distributed to the

maximum extent possible between the controllers. Either controller can be designated as the \master" which is the com-

puter through which the high-level commands are issued by the operator. Synchronization between the two controllers

is accomplished by shutting o� the interrupt source of the controller designated as the slave. The slave controller waits
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Fig. 3. UCD RRL Dual-Arm Testbed

for a signal from the master controller to start its control cycle. During each control cycle, force and transformation

data is exchanged. When the user enters the command to return to the single-arm mode, the GPIB link is closed and

the slave interrupt source is turned back on. The current sampling rate is 200Hz.

V. Experimental Results

For each of the experiments conducted below, the damping and sti�ness matrices were chosen as Bi = 62:9Mi, and

Ki = 631Mi so that the bandwidth is the same for any choice of Mi. Furthermore, in the dual-arm experiments the

impedance chosen for each manipulator was identical. �Di was chosen to be diagonal as in section II-C except that the

�rst element was reduced by 50% based on experimental data. The sampling period is 5 msec. Endpoint (single arm) or

internal (dual arm) force and moment are plotted along with position and orientation errors for each experiment. The

orientation error is expressed as the magnitude of the axis-angle representation of the error.
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A. Computational Delays - Single-arm

To test Theorem 1, a PUMA 560 was �tted with an end e�ector consisting of a rigid aluminum rod with a ball tip.

The tip was brought into contact with a rigid surface located in the x-y plane and a 20N force step command given in the

negative z direction as shown in Figure 5. The inertia matrix was chosen asM = �J�T �DJ�1 with � = 0:9; 1:0; 2:0.

Results of the experiments are shown in Figures 7-9. The amount of oscillatory behavior is inversely proportional to

�. This is consistent with the theory. The lower bound is approximately � = 0:8 at which point a limit cycle occurs

whereby the manipulator bounces on the surface. This value is somewhat higher than the theoretically predicted value

of � = 0:5.

The experiments were repeated with diagonal M with separate translational and rotational components - M =

diagfm1I3 ; m2I3g. The theoretical lower bound on M was found to be m1 = 36 Kg and m2 = 1:3 Kg-m2.

Experiments were conducted for the following values of (m1;m2): (23; :8), (36; 1:3), (50; 1:8). The results are shown

in Figures 10-12. As in the previous experiments, increasingM has a stabilizing in
uence on the force response and the

response becomes less oscillatory as M increases. The experimental lower bound was (m1;m2) = (23; :8) which is

somewhat lower than the theoretical, but the fundamental point that a lower bound exists is veri�ed by the experiments.

B. Computational Delays - Dual-arm System

To test Theorem 2 a rigid object consisting of a .38m long sti� aluminum rod was bolted directly to the force

sensors attached to two PUMA 560s as shown in Figure 6. For each experiment an internal force step command of

� = [20 0 0 0 0 0]N was issued. In the experimental plots, � is expressed in object-frame coordinates, but note that
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it is expressed in world-frame coordinates when used to compute ~fId. The object frame is located at the center of the

object with the x-axis pointed along the rod's long axis.

Experiments were conducted for each Mi = �J
�T
i

�DiJ
�1
i with � = 0:9; 1:0; 2:0. Results of the experiments are

plotted in Figures 13-15. In each case the internal force at the object frame expressed in object-frame coordinates is

plotted. The amount of oscillatory behavior is inversely proportional to �. Larger values of � have a stabilizing in
uence

on the force response. This is consistent with the theory. The lower bound is approximately � = 0:9 at which point

the system goes unstable. The experimental value for the boundary is somewhat higher than the theoretically predicted

value of � = 0:5.

The experiments were repeated for diagonalMi using separate inertias for the translation and rotational components.

The theoretical lower bound for the inertia is (m1;m2) = (18; 0:6). Experiments were conducted for the following

(m1;m2): (11; 0:4), (18; 0:6), (37; 1:3). The results are plotted in Figures 16-18. The amount of oscillatory behavior

is again inversely proportional to the inertia. Below (m1;m2) = (11; 0:4), the system is unstable. As with the

single-arm case, the experimental lower bound for the inertia is somewhat lower than the theoretical bound.

Possible explanations for the deviation of the lower bound of the inertia from the theoretically predicted values for

both the single and dual-arm cases are that neither manipulator is truly rigid and the noncolocation of the force sensors

and actuators along with possibly other nonlinear e�ects may contribute to instability. Even though the experimental

and theoretical values do not match exactly, they are close and the experiments verify that there is a lower bound on

the inertia matrix and that appropriate choice of each Mi has a stabilizing in
uence on the force response.

C. Trajectory Tracking

To test the tracking capability of the control law presented in section II-A, motion experiments were conducted with

the robots manipulating the rigid object. Based on the results of the preceding section, each impedance inertia was

chosen as Mi = 2J�Ti
�DiJ

�1
i .

The object frame was chosen to be the geometric center of the object and the right PUMA base frame designated

as the world frame. The trajectory for the motion experiments is based on a �fth-order polynomial. To compute the

orientation trajectory the desired rotation matrix is �rst converted to a quaternion, the interpolation done, and then

the quaternion set point converted back into the desired rotation matrix. Each controller computes its own trajectory

on line from the desired object set point.

The motion experiment consisted of moving the object from

wTobj =

2
6666664

1 0 0 :650

0 1 0 :150

0 0 1 :450

0 0 0 1

3
7777775

(41)

to

wTobj =

2
6666664

0:958 0 0:287 :800

0 1 0 :150

�0:287 0 0:958 :250

0 0 0 1

3
7777775

(42)

in two seconds with either � = [0 0 0 0 0 0]TN or � = [20 0 0 0 0 0]TN. The results are given in Figures 19-20 which

show good control of internal force and moment during the motion and excellent control of the position and orientation
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of the object. To test the sensitivity of the controller to payload variation, the object weight was increased to 30N and

the experiment repeated. The results are plotted in Figures 21-22. Internal force is controlled to within �20% while

position and orientation errors are kept well below 1mm and 1�, respectively.

VI. Conclusion

A simple robust internal force-based impedance control law for coordinating manipulators was presented which is

computationally inexpensive and requires only minimal knowledge of each manipulator's inertia matrix. Since internal

force is used in the impedance relationship, no knowledge of the object dynamics are required and object dynamics do

not contribute to tracking and steady-state errors. The stability of the control system was analyzed including the e�ects

of computational delays which showed that there exists a lower bound on the inertia matrix vis-a-vis the manipulator's

estimated Cartesian end-point inertia which is independent of the sampling period and is valid under the rigid-body

model assumption for the manipulators. Extensive experiments were conducted on a system consisting of two PUMA

560 manipulators which validate the proposed controller and showed that the system demonstrates excellent control of

position and orientation along with the internal force and moment exerted on the object.
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Fig. 6. Dual-arm Manipulation
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Fig. 7. Single-arm Step Response M = 0:9J�T �DJ�1
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Fig. 11. Single-arm Step Response (m1;m2) = (36; 1:3)
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Fig. 16. Dual-arm Step Response (m1;m2) = (11; :4)
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Fig. 17. Dual-arm Step Response (m1;m2) = (18; :6)
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Fig. 18. Dual-arm Step Response (m1;m2) = (37; 1:3)
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Fig. 19. Dual-arm Motion - Object=8N, �=0N
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Fig. 20. Dual-arm Motion - Object=8N, �=20N
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Fig. 21. Dual-arm Motion - Object=30N, �=0N
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Fig. 22. Dual-arm Motion - Object=30N, �=20N


