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Abstract

An internal force-based impedance control scheme for cooperating manipulators is intro-

duced which controls the motion of the objects being manipulated and the internal force on

the objects. The controller enforces a relationship between the velocity of each manipulator

and the internal force on the manipulated objects. Each manipulator is directly given the

properties of an impedance by the controller, thus, eliminating the gain limitation inherent

in the structure of previously proposed schemes. The controller uses the forces sensed at the

robot end e�ectors to compensate for the e�ects of the objects' dynamics and to compute the

internal force using only kinematic relationships. Thus, knowledge of the objects' dynamics is

not required. Stability of the system is proven using Lyapunov theory and simulation results

are presented validating the proposed concepts. The e�ect of computational delays in digital

control implementations is analyzed vis-a-vis stability and a lower bound derived on the size

of the desired manipulator inertia relative to the actual manipulator endpoint inertia. The

bound is independent of the sample time.

1 Introduction

Multiple robots performing tasks together in a cooperative manner can have a signi�cant

advantage over a single robot just as a human being using two arms has an advantage over

one using one arm and multiple humans have an advantage over a single human. If the load

is heavier than the carrying capacity of a single robot, multiple robots can distribute the

load among them and move the object where the single robot would not be able to do so.

In assembly tasks multiple robots can handle several objects at once increasing the speed of

assembly and obviating the need for special �xturing. Assembly of objects in space is made

easier where there is no �xed workbench on which to mount the single robot.

Various controllers for cooperating multiple robots have been proposed during recent

years. They may be generally classi�ed as position/force control [1, 2, 3, 4, 5, 6, 7, 8] or
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impedance control [9, 10, 11, 12, 13, 14]. In position/force control the extra degrees of

freedom of the multiple arm system are used to control internal force. The required joint

torques are the sum of torques from the position and force control loops. Impedance control

has generally been implemented by adding a force loop around a position controller. Sensed

force is used to make corrections to the commanded trajectory via an admittance/compliance

relationship. The modi�ed trajectory is the input to the position controller.

Problems have been reported in tuning the Cartesian position control gains in the hybrid

position/force control scheme [1] and the force loop was modi�ed to become a compliance

to reduce computational complexity. This e�ectively turned the scheme into an impedance

control scheme.

In [14] both absolute and relative position of the object and absolute and internal force

on the object are de�ned as in [1] and an impedance control scheme is implemented in object

position space (absolute and relative). Gravity compensation for each arm is provided, but

not for the object so object dynamics will contribute to tracking error. Another drawback is

the di�culty of specifying the absolute and relative orientation of the object whose meaning

is not clear. The problem is resolved by specifying the control in the desired task space,

transforming to joint space via inverse kinematics, and then transforming again to object

space. This has the drawback, however, of requiring the inverse kinematics. The scheme

does not require force sensors which is simpler and cheaper to implement, but it is di�cult

to regulate the force to some desired level without them. Also, it should be noted that in

[15] better results were obtained with force feedback when implementing impedance control

on a single manipulator.

The object impedance control scheme in [12] enforces an impedance of the object rather

than the manipulator endpoints. The experimental results are quite good, but the scheme

does require knowledge of the object dynamics which may not always be known. Endpoint

impedance control was also investigated, but as expected the tracking performance is not as

good due to the e�ect of the object inertial forces.
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Impedance control for cooperating manipulators should enforce a relationship between

velocity and internal force. Otherwise, the object dynamics can contribute to tracking and

steady-state position errors. Most of the previously proposed impedance controllers for

cooperating manipulators do not adequately address this phenomenon. [13] does not consider

the object dynamics at all and [10] includes only a gravity term. The virtual internal model

scheme of [11] does include the object dynamics, but it is model based and requires knowledge

of the object dynamics and so is limited to applications where the object properties are well

known. Also, since it is implemented by feeding back the sensed force via an admittance

function, the size of the admittance function must be less than the size of the reciprocal of

the forward loop mapping to assure stability [16]. Thus, the gain of the admittance function

is limited by the gain of the position controller.

The internal force-based impedance control scheme presented in this paper embodies

two key concepts which are an improvement over previously proposed schemes:

1. Internal force is used in the impedance relationship by computing it from the sensed

forces at the robot end e�ectors using only kinematic relationships. Thus, the dynamics

of the manipulated objects do not contribute to tracking and steady-state position error

and knowledge of the object dynamics is not required.

2. Each manipulator is directly given the property of an impedance by the controller. This

eliminates the need to have both a position and force control loop and the impedance

parameters (i.e., gains) are not limited by a given position controller.

In section 6 the e�ects of computational delays are analyzed vis-a-vis system stability

and the choice of parameters in the proposed internal force-based impedance control law.

It is shown that there exists a lower bound on the size of the desired inertia matrix which

is independent of the sample time. This independence has implications even when simulat-

ing the continuous-time control system as there is always some inherent delay due to the

integration time period.
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2 System

Consider the system of n robots handling an object as shown in Figure 1. The object

could consist of multiple objects in contact with each other during an assembly task. Each

manipulator grasps the object rigidly and, thus, may exert both a force and a moment on

the object. We de�ne the following nomenclature with all vectors expressed in the Cartesian

world frame:

xi = Cartesian position and orientation of the ith robot end-e�ector frame

pi = [pix piy piz]
T = the vector from ith the end-e�ector frame to the object frame

fi = force exerted by the ith robot end e�ector

mi = moment exerted by the ith robot end e�ector

~fi = [fi mi] = force/moment applied by the ith robot end e�ector

~f = [ ~fT1 ::: ~fTn ]
T = combined force vector

~fM = motion-inducing force/moment applied by the manipulators

~fI = internal force/moment applied by the manipulators

~fo = [fTo mT
o ]

T = net force and moment at the object

Joi = Jacobian from the object frame to the ith end-e�ector frame

Jo = [JT
o1(p1) ::: J

T
on(pn)]

T = combined object Jacobian

�i = joint torque vector for the ith robot

qi = the vector of joint variables for the ith robot

Di(qi) = inertia matrix of the ith robot

Ei(qi; _qi) = Coriolis, centripetal, and gravity vector for the ith robot

Ji(qi) = Jacobian of the ith robot

The dynamic equation for each manipulator is described by

�i = Di(qi)�qi + Ei(qi; _qi) + JT
i (qi)

~fi: (1)

The function arguments are suppressed subsequently for convenience.
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Figure 1: n-Manipulator System

3 Internal force

When multiple manipulators grasp an object, the force applied by the manipulators may

be decomposed into motion-inducing and internal force. Internal force consists of compressive

or tensile force and torsion. Our objective in this section is to decompose the applied force,

~f , into its motion-inducing, ~fM , and internal, ~fI , components with

~f = ~fM + ~fI : (2)

When the manipulators grasp the object rigidly, the net force at the object frame is

related to the forces applied by the manipulators by

~fo = [JT
o1 � � �J

T
on]

~f = JT
o
~f (3)
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where

JT
oi =

2
64

I3 O3

�Pi I3

3
75 and Pi = pi� =

2
666664

0 �piz piy

piz 0 �pix

�piy pix 0

3
777775
: (4)

The internal component produces no net force on the object and, thus, lies in the null

space of JT
o . Using this fact we get from (2) and (3) the following decomposition

~fM = JT#
o JT

o
~f and ~fI = (I � JT#

o JT
o )

~f (5)

where JT#
o is a generalized inverse of JT

o . The generalized inverse, JT#
o , and, hence, (5)

depends on the metrics chosen for the space of applied forces, ~F , and the space of net forces

on the object, ~Fo, [17]. Equivalent solutions to (5) have been presented in [6, 18, 19] with

JT#
o =

1

n

2
6666666666664

I3 O3

P1 I3
...

...

I3 O3

Pn I3

3
7777777777775

=
1

n

2
666664

J�To1

...

J�Ton

3
777775
: (6)

As pointed out in [18], the above solution results in zero internal loading anywhere in the

object when fI = 0. See [20] for a detailed discussion of internal force in cooperating

manipulators including solutions to systems with non-rigid grasping. It should also be noted

that the projection operator onto the internal-force subspace, I � JT#
o JT

o , does not depend

on the object Jacobian. To show this fact we perform the matrix multiplication

JT#
o JT

o =
1

n

2
666666664

I6 J�To1 JT
o2 � � � J�To1 JT

on

J�To2 JT
o1 I6 � � � J�To2 JT

on

...
...

. . .
...

J�Ton JT
o1 J�Ton JT

o2 � � � I6

3
777777775

(7)

where for i; j = 1; 2; :::n

J�Toi JT
oj =

2
64

I3 O3

Pi � Pj I3

3
75 (8)
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Thus, I � JT#
o JT

o depends only on the vector from each end-e�ector frame to each other

end-e�ector frame and not the object Jacobian. This matches our intuition as internal force

should not be a function of where the object frame is located. It also permits us to choose

any suitable frame on the object as the task frame.

4 Controller

Impedance control enforces a relationship between force and velocity and has been

shown to be a valid concept for a robot that interacts with its environment [21]. In the

multiple-manipulator system, the environment each manipulator interacts with consists of

the object or objects being manipulated and the other manipulators. Since our objective is

to simultaneously control the motion of objects and the internal force and not the total forces

of interaction, impedance control for cooperating manipulators should enforce a relationship

between the internal force and velocity. If the force in the impedance relationship is the total

force imposed by the environment on the manipulator, then object dynamics will contribute

to tracking and steady-state position error of the object or objects. One possible impedance

that each manipulator may be given is the following linear second-order function

Mi��xi +Bi� _xi +Ki�xi = � ~fIi (9)

where �xi = xid� xi = Cartesian position and orientation error of the ith robot end e�ector

� ~fIi = ~fIi � ~fIid = internal force error at the ith robot end e�ector

Mi; Bi; Ki = desired inertia, damping, and sti�ness matrices for the ith robot.

The subscript d denotes a desired quantity.

Each manipulator's end-e�ector velocity is related to its joint velocity by its Jacobian

_xi = Ji _qi: (10)

Di�erentiating (10) and solving for �qi yields

�qi = J�1i (�xi � _Ji _qi): (11)
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Solving equation (9) for �xi, substituting into equation (11), and incorporating into each

manipulators dynamic equation (1), yields the following control law for each robot:

�i = DifJ
�1
i (M�1

i [Mi�xid +Bi� _xi +Ki�xi � � ~fIi]� _Ji _qi)g+ Ei + JT
i
~fi: (12)

Thus, given a desired trajectory, xid and ~fIid, and measuring position, xi, and end e�ector

force, ~fi, the required joint torque can be computed. The actual Cartesian end-e�ector

position for each manipulator can be computed from the measured joint angles of each

manipulator and the forward kinematics. The actual internal force, ~fIi, is computed from

equation (5) from the forces, ~f , sensed at all of the end e�ectors. The internal impedance

controller is depicted in Figure 2.

The commanded internal force must be chosen to lie in the range of the internal force

projection operator, I�JT#
o JT

o , which is rank 6n�6. That is, ~fId = BIy where BI is a basis

for I�JT#
o JT

o and y is a (6n� 6)� 1 vector representing the commanded internal force. For

example, for n = 2 a basis for I � JT#
o JT

o is

BI =

2
64

I6

�J�To2 JT
o1

3
75 : (13)

Then ~fI1 = y and ~fI2 = �J�To2 JT
o1
~fI1. Thus, we may choose the internal force as seen at

end-e�ector 1 and use (13) to compute the desired internal force as seen at end-e�ector 2.

Internal force-based impedance control has the following advantages over schemes pre-

viously proposed:

1. Internal force-based impedance control is a uni�ed concept in that separate force and

position control loops are not required.

2. Internal force is used in the impedance relationship, and, thus, the object dynamics do

not contribute to tracking and steady-state position error of the object.

3. Internal force is computed from sensed force via kinematic relationships and, therefore,

knowledge of the object dynamics are not required.
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Figure 2: Internal Force-Based Impedance Controller

The same control law (12) is used to control the robots during both constrained and uncon-

strained operation. It also has the desirable feature of being implemented in Cartesian space

and, thus, the inverse kinematics are not required.

5 Stability

The �rst and foremost requirement for any control algorithm is that the system be

stable. Conditions for stability of the multiple-robot system employing control algorithm

(12) are stated as the following theorem:

Theorem. If Mi; Bi; and Ki in control law (12) are symmetric positive de�nite and

each robot's Jacobian, Ji, is nonsingular, the system is stable.
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Proof. To show stability of the overall system, we �rst de�ne the error state space

vector to be

e = [�xT � _xT ]T (14)

where �x = [�xT1 �xT2 : : : �x
T
n ]

T for i = 1 to n. We also de�ne the following combined

impedance matrices M = diagfMig, B = diagfBig, and K = diagfKig.

From Lyapunov theory [22] the system is asymptotically stable if there exists a scalar

function V of the state e with continuous �rst order derivatives such that

1. V (e) is positive de�nite,

2. V (e)!1 as kek ! 1,

3. _V (e) is negative semi-de�nite ,

We choose the following Lyapunov function candidate

V =
1

2
� _xTM� _x +

1

2
�xTK�x: (15)

Since allMi and Ki are symmetric positive de�nite, so areM and K. Therefore, V is positive

de�nite and condition 1 is satis�ed. V also satis�es condition 2.

Taking the derivative of V with respect to time, we get

_V = � _xTM��x + � _xTK�x (16)

or _V = � _xT (M��x +K�x): (17)

Substituting the control law (12) into the dynamic equation for each robot (1) yields the

impedance relationship (9). Solving (9) for M��x +K�x and substituting into (17) we get

_V = � _xT � ~fI � � _xTB� _x: (18)

The end e�ector velocities are related to the object velocity via the object Jacobian

� _x = Jo� _xo (19)
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where _xo = velocity of the object. Substituting (19) into (17) yields

_V = � _xTo J
T
o �

~fI � � _xTB� _x: (20)

Since � ~fI lies in the null space of JT
o , the �rst term on the right is zero and

_V = �� _xTB� _x � 0: (21)

Since each Bi is symmetric positive de�nite, so is B. Thus, _V is negative semi-de�nite and

condition 3 is satis�ed. Thus, the system is stable. 2

To extend the proof to further show that the system is asymptotically stable, we need to

show that the system cannot get stuck at some �x 6= 0. We de�ne G to be largest invariant

set in R = fej _V (e) = 0g. By LaSalle's invariant set theorem [22], e asymptotically converges

to G as t ! 1. Using the fact that � _x = 0 when _V = 0 and (9), we get that the largest

invariant set in R is

G = fe j � _x = 0; K�x = � ~fIg: (22)

Thus, at convergence

K�x = � ~fI : (23)

Multiplying (23) by JT
o and using the fact that � ~fI lies in the null space of JT

o , we get

JT
o K�x = JT

o �
~fI = 0 (24)

or JT
o1K1�x1 + JT

o2K2�x2 + : : :+ JT
onKn�xn = 0: (25)

Since the manipulators grasp the object rigidly, kinematic constraints exist among the

manipulators. For ease of analysis we will examine the two-arm case, but the results may be

extended to any number of arms in a similar fashion. The following kinematic constraints

exist between the two manipulators rigidly grasping an object:

x1t +R1p12 = x2t (26)

RT
1R2 = R12 (27)
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where the subscript t denotes Cartesian position component of x, Ri is the rotation matrix

for the ith manipulator, p12 is a constant vector from the �rst end-e�ector frame to the

second end-e�ector frame expressed in the �rst end-e�ector frame, and R12 is a constant

matrix representing the orientation of the second end-e�ector frame with respect to the �rst

end-e�ector frame.

In error space the position constraint (26) becomes

�x1t + �R1p12 = �x2t (28)

where �xit = xitd � xit and �R1 = R1d � R1. The subscript d denotes a desired quantity.

The orientation error may be expressed as a rotation matrix as Rei = RidR
T
i . From the

orientation constraint (27) we get

RT
1R2 = RT

1dR2d ) R1dR
T
1 = R2dR

T
2 ) Re1 = Re2 ) �x1o = �x2o (29)

where the subscript o denotes orientation. Thus, the kinematic constraints require that the

orientation errors are equal.

Combining (25), (28), and (29) we get the total set of constraints

2
64
JT
o1K1 JT

o2K2

I6 �I6

3
75 �x +

2
666664

06�1

�R1p12

03�1

3
777775
= 012�1: (30)

The second term in (30) is a nonlinear function of the desired and actual orientation of the

�rst end-e�ector frame. If the orientation error is zero, the second term is zero and the

position error is zero since it can be shown that the �rst matrix has full rank and null space

equal to f0g. Thus, G = f0g and the system is asymptotically stable. It can also be shown

from (28) that if the position error is zero, so is the orientation error and G = f0g. Note

also that if there is no object, p12 = 03x1 and G = f0g. However, the nonlinearity of the

second term makes it di�cult to prove that the only solution to (30) is �x = 0 although we

conjecture that it is. A rigorous proof is left to future work. Thus, the system has been

shown to be stable, but not asymptotically stable.
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6 Computational Delays

The control law (12) and the stability proof in section 5 apply to the continuous-time

case. In practice the control law will be implemented digitally. Computational delays can

a�ect the stability of the system and place bounds on the values of the parameters chosen

in the impedance relationship (9). Since the control law (12) is also intended to be used

during the unconstrained phase prior to the robots grasping or squeezing the object to be

handled, the e�ects of digital implementation of the control law on a single manipulator is

�rst analyzed. The e�ects of computational delays on a dual-manipulator system interacting

with a common object is then analyzed.

6.1 Single Manipulator

When the internal force-based impedance control law is used by a single manipulator,

internal force is not applicable since the manipulator is not interacting with an object and

other manipulators. If the manipulator is moving in free space, the environment imposes

no force on the end e�ector. This is referred to as unconstrained operation. It is possible

that the manipulator may come in contact with a rigid surface. In this case the total

force appearing at the end e�ector is used for ~fI in the control law. This is referred to

as constrained operation. Both cases for single-manipulator operation are analyzed in the

following sections.

6.1.1 Unconstrained Manipulator

In the analysis that follows, the assumption is made that the sampling time is su�ciently

small such that the robot nonlinearities are e�ectively canceled by the inner loop control law

� = DJ�1(u� _J _q) + E: (31)
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Substituting (31) into (1) results in the decoupled double integrator system

�x = u: (32)

De�ne the state to be

X =

2
64
x

_x

3
75 : (33)

where x is a vector of Cartesian position and orientation of the end e�ector. With a zero-

order-hold (ZOH) on the input, (32) becomes along each degree of freedom

Xk+1 =

2
64
1 Ts

0 1

3
75Xk +

2
64
T 2
s =2

Ts

3
75 uk = �Xk + �uk: (34)

where Ts = the sampling period and k.

We restrict the analysis to the case where M , B, and K are diagonal so that the system

remains decoupled along each degree of freedom. We will denote the inertia, damping, and

sti�ness along the jth degree of freedom by mj, bj, and kj, respectively. The impedance

controller (9) along the jth degree of freedom is described by

ujk = �
kj
mj

xjk �
bj
mj

_xjk + �xdjk +
bj
mj

_xdjk +
kj
mj

xdjk (35)

or ujk = �KcjXjk +Njrjk: (36)

where Kcj = [ kj
mj

bj
mj
], Nj = [ kj

mj

bj
mj

1], and rjk = [xdjk _xdjk �xdjk]
T = the reference input

for jth degree of freedom. Substituting (36) into (34), we get the closed-loop state equation

along the jth of freedom

Xj(k+1) = [�� �Kcj]Xjk + �Njrjk = �cjXjk + �Njrjk (37)

�cj =

2
664
1� T 2

s kj
2mj

Ts �
T 2
s bj
2mj

�Tskj
mj

1� Tsbj
mj

3
775 : (38)

The stability of the discrete-time system (37) is determined by the eigenvalues of �cj.

The system will be exponentially stable if the magnitudes of the eigenvalues of �cj are all
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less than one. Using the Jury test on �cj we get the following inequality which expresses

the bounds on the impedance parameters:

Tskj
2

< bj <
2mj

Ts
: (39)

Thus, for a given sampling period mj, bj, and kj must be chosen to satisfy (39). It is

important to note that it is possible to chose mj and kj such that no bj can be found which

will result in system stability. K primarily controls the positional accuracy of the robot

while M determines the bandwidth. There is a tradeo� between the two. There is a limit

as to how much the desired endpoint inertia, M , of the robot can be reduced. The limit on

M is even more severe in the constrained case due to the e�ect of force feedback as we shall

see in the next section.

6.1.2 Constrained Manipulator

The constrained case is de�ned as the manipulator motion being completely restricted.

The analysis may be applied to the case of the manipulator in contact with a rigid surface.

Once the manipulator breaks contact, then the analysis of the previous section applies. While

in contact with a completely rigid surface, the analysis of this section is applicable.

The problem of contact stability has been examined in [23, 24, 25, 26, 27]. In [23, 24]

instability is attributed to noncolocation of the sensor and actuators. In [25] impedance

control is implemented by feeding back the force error through a compliance function and

transforming it to a trajectory correction. To assure stability the gain of the compliance

function is limited by the gain of the position controller. The analysis is not applicable to

internal force-based impedance control as the structure of the controller proposed in this

paper is di�erent.

The e�ect of delays in impedance control is analyzed in [26], but the analysis is carried

out in the continuous-time domain and is not applicable to digital implementations. Also,

only sti�ness and damping terms are considered. Digital implementations of sti�ness and
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damping control were examined in [27] which showed a tradeo� between bandwidth and the

sti�ness of the environment. In the following analysis, we show that there is a limitation

on the size of the controller inertia matrix when internal force-based impedance control is

implemented digitally.

Substituting the control law (12) with � ~f replacing � ~fI into the dynamic equation for

the manipulator (1), yields in the continuous-time case

JT ~f = �DJ�1M�1� ~f + JT ~f (40)

where we have used the fact that in the constrained case the manipulator is not moving

( _q = 0). For the digital case, it is observed that when the left side of (40) is at sample

instant k+1, the right side (the control input) is at sample instant k due to the one sample

delay inherent in the digital controller. The result is the following discrete-time equation

~fk+1 = (I � J�TDJ�1M�1) ~fk + J�TDJ�1M�1 ~fdk (41)

~fk+1 = �cl
~fk + � ~fdk: (42)

The stability of the discrete-time system (42) is determined by the eigenvalues of �cl.

The system will be exponentially stable if the magnitudes of the eigenvalues of �cl are all

less than one. The term J�TDJ�1 is the actual inertia of the manipulator as seen at the

end e�ector. Equation (42) places a bound on how much smaller the desired inertia, M , can

be relative to the actual end point inertia of the manipulator. This bound is independent of

the sample time. In the scalar case, M cannot be any smaller than one half the mass of the

manipulator.

Equation (42) provides conditions for stability under the assumption that the manipu-

lator Jacobian and inertia matrix are known exactly. If this is not true, then equation (42)

becomes

~fk+1 = (J�T ĴT � J�T D̂Ĵ�1M�1) ~fk + J�T D̂Ĵ�1M�1(K�xk + ~fdk) (43)

~fk+1 = �cl
~fk + �(K�xk + ~fdk) (44)



17

where the ^ designates as estimated value. An inaccurate estimate of the manipulator

Jacobian will a�ect the boundary, but since it is usually known reasonably well the bound

determined by equation (42) will be close to the exact value.

6.2 Multiple-Manipulator System

The problem of analyzing the e�ects of computational delays on a system of multi-

ple manipulators is more complicated than the single manipulator case. Each manipulator

interacts with the object and the other manipulators and its motion is constrained by kine-

matic relationships among the manipulators and the object. To determine the e�ect of

computational delays we will assume that the manipulators and the object are completely

constrained. This is analogous to having the held object in contact with a rigid surface.

Although not the most general case, it does yield insight into the control of internal forces in

the system. Without this assumption the problem is less mathematically tractable. While

the analysis is not directly applicable to the unconstrained case, the results are shown to

be conservative in our simulations studies and should yield su�cient conditions for stability

for the unconstrained system. We examine a two-arm system rigidly grasping a rigid object,

but the analysis can be extended to a system of n manipulators in a similar fashion.

Substituting the control law (12) into the dynamic equation for each manipulator (1),

yields in the continuous-time case

JT
i
~fi = �DiJ

�1
i M�1

i � ~fIi + JT
i
~fi (45)

where we have used the fact that in the constrained case the manipulator is not moving

( _q = 0). For the digital case, it is observed that when the left side of (45) is at sample

instant k+1, the right side (the control input) is at sample instant k due to the one sample

delay inherent in the digital controller. The result is the following discrete-time equation for

each manipulator:

~fi(k+1) = ~fik � J�Ti DiJ
�1
i M�1

i
~fIik + J�Ti DiJ

�1
i M�1

i
~fIidk: (46)
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The de�nition of internal force from (5) is

~fI1k =
1

2
( ~f1k � J�To1 JT

o2
~f2k) (47)

~fI2k =
1

2
( ~f2k � J�To2 JT

o1
~f1k): (48)

Substituting (47) and (48) into (46) yields

2
664

~f1(k+1)

~f2(k+1)

3
775 =

2
664

I � 1
2
J�T1 D1J

�1
1 M�1

1
1
2
J�T1 D1J

�1
1 M�1

1 J�To1 JT
o2

1
2
J�T2 D2J

�1
2 M�1

2 J�To2 JT
o1 I � 1

2
J�T2 D2J

�1
2 M�1

2

3
775

2
664

~f1k

~f2k

3
775

+

2
664

J�T1 D1J
�1
1 M�1

1

�J�T2 D2J
�1
2 M�1

2 J�To2 JT
o1

3
775 ~fI1dk (49)

~fk+1 = A ~fk +B ~fI1dk: (50)

The �rst question we would like to ask about the system (A;B) is whether or not it is

reachable. We partition B into

B =

2
64
B1

B2

3
75 =

2
64

J�T1 D1J
�1
1 M�1

1

�J�T2 D2J
�1
2 M�1

2 J�To2 JT
o1

3
75 : (51)

We can then express A as

A = I �

2
664

1
2
B1 �1

2
B1J

�T
o1 JT

o2

1
2
B2 �1

2
B2J

�T
o1 JT

o2

3
775 : (52)

Using the PBH test with � = 1, we get

rank[�I � A : B] = rank

2
664I � I +

2
664

1
2
B1 �1

2
B1J

�T
o1 JT

o2

1
2
B2 �1

2
B2J

�T
o1 JT

o2

3
775 : B

3
775 (53)

= rank[B : B] (54)

= rank(B): (55)

Since [�I � A : B] is less than full rank, the system (A;B) is not completely reachable.



19

We use the following transformation to decompose the system into its reachable and

unreachable parts

T =

2
64
2(I � J�To1 JT

o2�
�1B�1)J�To1 J�To1 JT

o2�
�1

�2��1B�11 J�To1 ��1

3
75 (56)

where � = B�11 J�To1 JT
o2 � B�12 . The transformed system matrices and state vector are

Â = T�1AT =

2
64
I � 1

2
JT
o1B1J

�T
o1 + 1

2
JT
o2B2J

�T
o1 0

0 I

3
75 (57)

B̂ = T�1B =

2
64

1
2
JT
o1B1 �

1
2
JT
o2B2

0

3
75 (58)

f̂k = T�1 ~fk =

2
64

JT
o1
~fI1k

B�11
~f1k � B�12

~f2k

3
75 (59)

JT
o1
~fI1k is the internal force exerted by manipulator 1 at the origin of the object frame. The

internal force at the object frame is the reachable part and is characterized by

f̂1(k+1) = [I �
1

2
JT
o1J

�T
1 D1J

�1
1 M�1

1 J�To1 �
1

2
JT
o2J

�T
2 D2J

�1
2 M�1

2 J�To2 ]f̂1k

+ [
1

2
JT
o1J

�T
1 D1J

�1
1 M�1

1 +
1

2
JT
o2J

�T
2 D2J

�1
2 M�1

2 J�To2 JT
o1]

~fI1dk (60)

f̂1(k+1) = Â11f̂1k + B̂1
~fI1dk: (61)

The unreachable part is

f̂2(k+1) = f̂2k: (62)

The stability of the reachable part is governed by the eigenvalues of Â11. If its eigenvalues

are less than one in magnitude, the reachable part is asymptotically stable. The unreachable

part has all its eigenvalues equal to one and, therefore, is marginally stable. The system

(Â; B̂) (or (A;B)) is BIBO stable if M1 and M2 are chosen such that the eigenvalues of the

reachable part are less than one in magnitude.

The analysis above has indicated that there is an unreachable part to the totally con-

strained dual-manipulator system using the proposed control law. What is the signi�cance
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of this unreachable part and what is its physical interpretation? The unreachable part as

expressed at the object frame is

JT
o1f̂2k = JT

o1M1J1D
�1
1 JT

1
~f1k + JT

o2M2J2D
�1
2 JT

2
~f2k: (63)

where JiD
�1
i JT

i is the inverse of the ith manipulator end point inertia. Equation (63) repre-

sents the sum of the forces exerted by both manipulators as if each had inertia,Mi, expressed

at the object frame. The unreachable part of the system (Â; B̂) is an expression of the prin-

ciple that we cannot simultaneously control both the position of and the net force on the

object. In control law (12) we control the position of the object and the internal force which

is the reachable part. If we de�ne the output, yk, to be the internal force as expressed at the

object frame, then

yk =
1

2
[JT

o1 � JT
o2]

~fk = C ~fk = Ĉf̂k (64)

where Ĉ = CT = [I 0]. Since the second element of Ĉ is zero, the unreachable part has no

e�ect on the output.

6.3 Relationship Between the Single and Dual-Manipulator Sys-

tems

We have established a bound on the size of M for both the single and dual-manipulator

cases. Since the manipulators may be required to operate independently or cooperatively,

we would like to know the relationship between the bounds on M in these two cases. The

single-manipulator bound is determined by �cl of equation (42), while the dual-manipulator

bound is determined by Â11 of equation (61).

To show the relationship between the single and dual-manipulator cases, we �rst refor-

mulate the bounds based on basic stability de�nitions. For the constrained single manipu-

lator, an equilibrium point is asymptotically stable if

1. 8� > 0 9 �(�) > 0 such that if k ~f0k < �, then k ~fkk < � 8k > 0;
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2. If k ~f0k < �, then limk!1 k ~fkk = 0, where ~f0 is the initial condition.

To show condition 1, we take the norm of both sides of equation (42) with ~fdk = 0 and

using the Cauchy-Schwartz inequality:

k ~fk+1k = k�cl
~fkk � k�clkk ~fkk: (65)

If k�clk < 1, then k ~fk+1k < k ~fkk. We choose � = �;. Then if k�clk < 1,

k ~f0k < � ) k ~fkk < � ) k ~fkk < � 8k > 0: (66)

Condition 1 is satis�ed if M is chosen such that k�clk < 1.

Compliance with condition 2 if k�clk < 1 is shown as follows:

lim
k!1

k ~fk+1k = lim
k!1

k�cl
~fkk (67)

lim
k!1

k ~fk+1k = lim
k!1

k�k
cl
~f0k (68)

lim
k!1

k ~fk+1k � lim
k!1

k�k
clkk

~f0k (69)

lim
k!1

k ~fk+1k � lim
k!1

�kk ~f0k (where 0 � � < 1) (70)

lim
k!1

k ~fk+1k = 0: (71)

Thus, the constrained single-manipulator system is asymptotically stable with the proper

choice of M .

Now let us examine the reachable part of the constrained dual-manipulator system.

First, we note that

Â11 =
1

2
(�cl1 + �cl2) (72)

kÂ11k = k
1

2
(�cl1 + �cl2)k (73)

kÂ11k �
1

2
(k�cl1k+ k�cl2k) (74)

where �cli = I�JT
oiJ

�T
i DiJ

�1
i M�1

i J�Toi . To show condition 1, we take the norm of both sides

of equation (61) with ~fI1dk = 0 and using the Cauchy-Schwartz inequality:

kJT
o1
~fI1(k+1)k = kÂ11J

T
o1
~fI1kk � kÂ11kkJ

T
o1
~fI1kk: (75)
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If kÂ11k < 1, then kJT
o1
~fI(k+1)k < kJT

o1
~fIkk. We choose � = �;. Then if kÂ11k < 1,

kJT
o1
~fI10k < � ) kJT

o1
~fI1kk < � ) kJT

o1
~fI1kk < � 8k > 0: (76)

Condition 1 is satis�ed if M1 and M2 are chosen such that kÂ11k < 1. If M1 and M2 are

chosen such that k�cl1k < 1 and k�cl2k < 1, then by (74) kÂ11k < 1 and condition 1 is

satis�ed.

Compliance with condition 2 can be shown as in the single-manipulator case if kÂ11k <

1. Thus, if the M of each manipulator is chosen such that it is asymptotically stable, then

the reachable part of the dual-manipulator system is also asymptotically stable. Therefore,

with the proper choice ofM1 and M2 the dual-manipulator system is BIBO stable. It should

be pointed out that if M1 and M2 are chosen such that each manipulator is individually

stable, then this is a conservative choice for the dual-manipulator case. There are choices of

M1 and M2 such that the individual manipulators would be unstable, but the constrained

dual-manipulator system is stable.

7 Simulation

7.1 System Dynamic Equations

In order to simulate a multiple-manipulator system using the proposed control law, a

dynamic equation for the complete system is required. The system consists of n six-link

manipulators handling an object. We �rst de�ne the following system matrices:

� =

2
666664

�1
...

�n

3
777775
; q =

2
666664

q1
...

qn

3
777775
; D =

2
666664

D1 0
. . .

0 Dn

3
777775
; E =

2
666664

E1

...

En

3
777775
; J =

2
666664

J1 0
. . .

0 Jn

3
777775

where the subscript denotes which manipulator.

The dynamic equation for each manipulator was given in equation (1). The dynamic
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equation for the object is

JT
o
~f = Do(xo)�xo + Eo( _xo; xo) (77)

where Do(xo) is the inertia matrix of the object, Eo(xo; _xo) is the Coriolis and gravity vector,

and xo is the Cartesian position of the object. Combining all the dynamic equations, we get
2
64
JT
o

JT

3
75 ~f =

2
64

Do�xo + Eo

� �D�q � E

3
75 : (78)

Equation (78) represents a system of 6+ 6n simultaneous equations with 6 + 12n unknowns

| six elements of the object acceleration vector, 6n joint accelerations, and 6n forces. Thus,

(78) is an under-determined system. In [28] constraint equations on the velocity for the

rigid-grasp case were used to eliminate ~f and �xo from equation (78) for a two-arm system.

In the following derivation, a systematic method is developed which applies a system of n

robots.

The following constraint equation among the velocities of the manipulators and the

object:

Jo _xo = J _q: (79)

Solving (79) for the object velocity, we get

_xo = J+
o J _q: (80)

Equation (80) is an exact solution as Jo is 6n � 6 and has full-column rank. The object

velocity along with the object position, which can be determined by the kinematics, are used

to compute Eo( _xo; xo). Di�erentiating (79) and solving for �xo in terms of joint variables, we

get

�xo = J+
o J �q + J+

o ( _J � _JoJ
+
o J) _q: (81)

Equation (81) is used to eliminate the object acceleration, �xo, from equation (78).

To get the necessary equations which may be added to (78) to form a completely de-

termined system, we substitute (80) into (79) to get

(J � JoJ
+
o J) _q = 0 (82)
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J4 _q = 0: (83)

Di�erentiating (83), we get

J4�q + _J4 _q = 0 (84)

where _J4 = _J � _JoJ
+
o J � Jo _J

+
o J � JoJ

+
0
_J . We only need 6n � 6 independent rows of (84).

De�ning ~J4 as 6n� 6 independent rows of J4, we get

~J4�q +
_~J4 _q = 0: (85)

Combining equations (78), (81), and (85), we get

2
666664

JT
o

JT

06n�6�6n

3
777775
~f =

2
666664

DoJ
+
o J

�D

~J4

3
777775
�q +

2
666664

DoJ
+
o ( _J � _JoJ

+
o J) _q + Eo

� � E

_~J4 _q

3
777775

(86)

J3 ~f = D3�q + E3 (87)

Equation (87) represents a system of 12n equations in 12n unknowns and can be solved

exactly for the forces in terms of the joint accelerations since J3 is full-column rank to get

~f = J+
3 (D3�q + E3): (88)

Substituting (88) into (87) and solving for the joint acceleration, we get

�q = (J3J
+
3 D3 �D3)

+(I12n � J3J
+
3 )E3: (89)

The right side of equation (89) is only a function of the joint positions, joint velocities, and

input torques. Thus, it may be used by the simulator to compute the joint accelerations at

each integration step. The above procedure applies to a system in which the manipulators

rigidly grasp the object, but can be applied in a similar manner to a system with non-rigid

or mixed grasps.
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Table 1: Manipulator and Object Parameters

item value

link 1 length/mass 1m/1Kg

link 2 length/mass 1m/1Kg

link 3 length/mass 0.5m/0.5Kg

object radius/mass 0.5m/0.2Kg

7.2 Simulation Results

The internal force-based impedance controller was simulated on a system consisting of

two 3-link planar manipulators rigidly holding a spherical object as depicted in Figure 3. The

dynamic model for each manipulator was taken from [29]. The link and object parameters

are given in Table 1. The object inertia matrix and Coriolis and gravity vector are

Do =

2
666664

0:2 0 0

0 0:2 0

0 0 0:02

3
777775
; Eo =

2
666664

0

1:96

0

3
777775
: (90)

The motion of the manipulators and the object is depicted in Figure 3. The desired

object trajectory is based on a quintic polynomial and consists of moving the object 0.5m in

the x direction, -0.5m in the y direction, and a rotation of 45 degrees in 0.5 seconds with the

desired internal force, ~fId, equal to zero. The commanded trajectory of the object is shown

in Figure 4.

Each manipulator impedance was chosen using the conditions derived in section 6 by

examining the actual end point inertia of each manipulator throughout the desired trajectory.

The inertia matrix, M , of each manipulator impedance was chosen to be small within the

stability bound of (61). Making M too small results in instability even when simulating a

continuous-time system because the bound on M is independent of the sample period which
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Figure 3: Planar Dual-Manipulator System
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Figure 4: Commanded Object Trajectory
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in a continuous-time simulation is the integration time step. The sti�ness matrix, K, for

each manipulator was chosen such that an impedance bandwidth of approximately 3 Hz is

achieved along each degree of freedom, and B was chosen to achieve critical damping. The

inertia, damping, and sti�ness matrices of each impedance relationship were

Mi =

2
666664

3 0 0

0 3 0

0 0 1

3
777775
; Bi =

2
666664

190 0 0

0 190 0

0 0 63

3
777775
; Ki =

2
666664

3000 0 0

0 3000 0

0 0 1000

3
777775
: (91)

The errors of the object position and internal force from the desired trajectory are shown

in Figure 5. The position errors are under 0.03mm and 0.01mrad during the motion and go

to zero in the steady state. The internal force is controlled within 0.1N and 0.14Nm of the

desired and goes to zero in the steady state.

To see the e�ect of the inertia on the internal force, M was increased to M=diagf6,6,2g

with K = 1000M to keep the bandwidth at 3Hz and B chosen to achieve critical damping.

Figure 6 shows the position tracking error and the internal force. As expected, the larger

value of impedance inertia causes higher internal force (0.23N and 0.28Nm max) during the

object motion. This suggest reducing M to minimize internal force error. Of course, there

is a limit to how much the actual manipulator inertia can be reduced without violating the

stability conditions. The e�ect of increasing M on position error (0.043mm and 0.013mrad

max) during the motion is less pronounced.

An interesting choice of impedance inertia is to set it equal to the actual end point

inertia of the manipulator. That is, Mi = J�Ti DiJ
�1
i . This choice of inertia assures that

the stability constraints of section 6 are met. Over the commanded trajectory the largest

singular values of M1 and M2 vary from 2.1 to 2.5 Kg and 1.5 to 2.6 Kg, respectively. Again,

to achieve the 3Hz bandwidth along each degree of freedom, K was chosen to be 1000M .

Figure 7 shows the position error and internal force. Position is controlled to within 0.006mm

and 0.002mrad and internal force is controlled to within 0.12N and 0.08Nm.

Finally, the system was simulated with error in the kinematic model of the manipulator.
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Figure 5: Object Position Error & Internal Force - M=diagf3,3,1g, K=1000M

The length of link 1 in the model used by the controller was 1.001m instead of the true value of

1m. The impedance parameters were M=diagf3,3,1g, B=diagf190,190,63g and K=1000M .

Figure 8 shows the internal force as expressed at the object frame for the same motion

as before. There is approximately 0.7mm and 0.25mrad of steady-state position error and

0.35N and 0.05Nm of steady-state internal force. This steady-state internal force is directly

proportional to the sti�ness matrix, K, in the impedance relationship and the amount of

kinematic error in the model. At steady-state the governing relationship is K�xi = �fIi.

Thus, the controller is robust with respect to kinematic errors.

The simulations validate that the internal force-based impedance controller for multiple-

manipulator systems is a viable control scheme that can simultaneously control the position

of the object being manipulated and the internal force. Careful choice of the inertia, damping,

and sti�ness matrices in the impedance relationship is important in achieving good system

performance. Extensive simulations also indicate that the system is asymptotically stable.
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Figure 6: Object Position Error & Internal Force - M=diagf6,6,2g, K=1000M
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Figure 7: Object Position Error & Internal Force - M=J�TDJ�1; K=1000M
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Figure 8: Object Position Error & Internal Force - Kinematic Error in the Model

8 Conclusion

The proposed internal force-based impedance controller for multiple cooperating ma-

nipulators enforces a relationship between the velocity of each manipulator and the internal

force on the objects being manipulated. It has several desirable features which are advan-

tages over previously proposed schemes. Each manipulator is directly given the property of

an impedance by the controller eliminating the gain limitation of previous schemes. Inter-

nal force, which is computed from sensed force via kinematic relationships, is used in the

impedance relationship which eliminates the need to know the object dynamics and reduces

their e�ect on tracking and steady-state error.

The system was shown to be stable with the proper choice of manipulator impedances.

The e�ects of computational delays were analyzed vis-a-vis stability and a lower bound

derived on the size of the desired manipulator inertia relative to the actual manipulator

endpoint inertia. The bound is independent of the sample time. Simulations on a two-

manipulator system showed the validity of the internal force-base impedance controller in

simultaneously controlling the motion of the object along with the internal force.
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